NLRS Conference 2017

Tracking BMP Adoption: Agriculture Voluntary BMPs

Trevor Sample
Agency Coordinator, NLRS
Illinois EPA, Bureau of Water
Tracking Measures

Resources
- Staff
- Funding & Grants

Outreach
- Partner organization’s events & media
- Farmer knowledge

Land & Facilities
- Land use changes
- Facility & permit updates

Water
- Calculated load reduction
- Measured loads at existing monitoring stations
<table>
<thead>
<tr>
<th>Practice/scenario</th>
<th>Nitrate-N reduction per acre (percent)</th>
<th>Nitrate-N reduced (million lb)</th>
<th>Nitrate-N reduction from baseline (percent)</th>
<th>Cost ($/lb removed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducing N rate from background to MRTN on 10 percent of acres</td>
<td>10</td>
<td>2.3</td>
<td>0.6</td>
<td>-4.25</td>
</tr>
<tr>
<td>Nitrification inhibitor with all fall-applied fertilizer on tile-drained corn acres</td>
<td>10</td>
<td>4.3</td>
<td>1</td>
<td>2.33</td>
</tr>
<tr>
<td>Split application of 50 percent fall and 50 percent spring on tile-drained corn acres</td>
<td>7.5-10</td>
<td>13</td>
<td>3.1</td>
<td>6.22</td>
</tr>
<tr>
<td>Split application of 50 percent fall, 10 percent pre-plant, and 50 percent side dress</td>
<td>15-20</td>
<td>26</td>
<td>6.4</td>
<td>3.17</td>
</tr>
<tr>
<td>Split application of 40 percent fall, 10 percent pre-plant, and 50 percent side dress</td>
<td>15-20</td>
<td>26</td>
<td>6.4</td>
<td>3.17</td>
</tr>
<tr>
<td>Cover crops on all corn/soybean tile-drained acres</td>
<td>30</td>
<td>84</td>
<td>20.5</td>
<td>3.21</td>
</tr>
<tr>
<td>Cover crops on all corn/soybean non-tiled acres</td>
<td>30</td>
<td>33</td>
<td>7.9</td>
<td>11.02</td>
</tr>
<tr>
<td>Bioreactors on 50 percent of tile-drained land</td>
<td>25</td>
<td>35</td>
<td>8.5</td>
<td>2.21</td>
</tr>
<tr>
<td>Wetlands on 35 percent of tile-drained land</td>
<td>50</td>
<td>49</td>
<td>11.9</td>
<td>4.05</td>
</tr>
<tr>
<td>Buffers on all applicable crop land (reduction only for water that interacts with active area)</td>
<td>90</td>
<td>36</td>
<td>8.7</td>
<td>1.63</td>
</tr>
<tr>
<td>Perennial/energy crops equal to pasture/hay acreage from 1987</td>
<td>90</td>
<td>10</td>
<td>2.6</td>
<td>9.34</td>
</tr>
<tr>
<td>Perennial/energy crops on 10 percent of tile-drained land</td>
<td>90</td>
<td>25</td>
<td>6.1</td>
<td>3.18</td>
</tr>
<tr>
<td>Point source reduction to 10 mg/L</td>
<td>14</td>
<td>3.4</td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>Practice/scenario</td>
<td>Total P reduction per acre (percent)</td>
<td>Total P reduced (million lb)</td>
<td>Total P reduction from baseline (percent)</td>
<td>Cost ($/lb removed)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>------------------------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>1.8 million acres of conventional till eroding > T converted to reduced, mulch, or no-till</td>
<td>50</td>
<td>1.8</td>
<td>5</td>
<td>-16.6</td>
</tr>
<tr>
<td>P rate reduction on fields with soil test P above the recommended maintenance level</td>
<td>7</td>
<td>1.9</td>
<td>5</td>
<td>-48.75</td>
</tr>
<tr>
<td>Cover crops on all corn/soybean tile-drained acres</td>
<td>30</td>
<td>4.8</td>
<td>12.8</td>
<td>130.4</td>
</tr>
<tr>
<td>Cover crops on 1.6 million acres eroding > T currently in reduced, mulch, or no-till</td>
<td>50</td>
<td>1.9</td>
<td>5</td>
<td>24.5</td>
</tr>
<tr>
<td>Wetlands on 25 percent of tile-drained land</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Buffers on all applicable crop land</td>
<td>25-50</td>
<td>4.8</td>
<td>12.9</td>
<td>11.97</td>
</tr>
<tr>
<td>Perennial/energy crops equal to pasture/hay acreage in 1987</td>
<td>90</td>
<td>0.9</td>
<td>2.5</td>
<td>102.3</td>
</tr>
<tr>
<td>Perennial/energy crops on 1.6 million acres eroding > T currently in reduced, mulch, or no-till</td>
<td>90</td>
<td>3.5</td>
<td>9</td>
<td>40.4</td>
</tr>
<tr>
<td>Perennial/energy crops on 10 percent of tile-drained land</td>
<td>50</td>
<td>0.3</td>
<td>0.8</td>
<td>250.07</td>
</tr>
<tr>
<td>Point source reduction to 1 mg/L (majors only)</td>
<td>8.3</td>
<td>22.1</td>
<td></td>
<td>13.71</td>
</tr>
<tr>
<td>Name</td>
<td>Combined practices and scenarios</td>
<td>Nitrate-N reduction (percent)</td>
<td>Total P reduction (percent)</td>
<td>Cost of reduction ($/lb)</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>NP1</td>
<td>MRTN, spring-only N application, bioreactors on 50 percent of acres, wetlands on 35 percent of acres, no P fertilizer on 12.5 million acres above STP maintenance, reduced till on 1.8 million conventionally tilled acres eroding >T, buffers on all applicable lands, point source to 1 mg total P/L and 10 mg nitrate-N/L</td>
<td>35</td>
<td>45</td>
<td>**</td>
</tr>
<tr>
<td>NP2</td>
<td>MRTN, spring-only N application, bioreactors on 50 percent of acres, wetlands on 10 percent of acres, no P fertilizer on 12.5 million acres above STP maintenance, reduced till on 1.8 million conventionally tilled acres eroding >T, cover crops on all corn/soybean acres, point source to 1 mg total P/L and 10 mg nitrate-N/L</td>
<td>45</td>
<td>45</td>
<td>**</td>
</tr>
<tr>
<td>NP3</td>
<td>MRTN, spring-only N application, bioreactors on 30 percent of acres, no P fertilizer on 12.5 million acres above STP maintenance, reduced till on 1.8 million conventionally tilled acres eroding >T, cover crops on 87.5 percent of corn/soybean acres, buffers on all applicable lands, perennial crops on 1.6 million acres >T and 0.9 million additional acres</td>
<td>45</td>
<td>45</td>
<td>**</td>
</tr>
</tbody>
</table>
Types of Ag BMPs recommended in NLRS

Nitrate
- In Field Practices
 - Nitrogen Management
 - MRTN, Inhibitors, Split appl.
 - Cover Crops
- Edge of Field Practices
 - Bioreactors
 - Buffers (non-tile drained)
 - Wetlands
- Land Use Change
 - Perennial/Energy Crops

Phosphorus
- In Field Practices
 - Reduced Tillage Systems
 - Soil Tests/Nutrient Management
 - Cover Crops
- Edge of Field Practices
 - Buffers
 - Wetlands
- Land Use Change
 - Perennial/Energy Crops
AWQPF Objectives

- Steer and Coordinate Outreach and Education
- Training for farmers and advisors
- Strength Connections between industry, CCAs, State initiatives
- Track BMPs
- Coordinate Cost-share targeting
- Develop other tools as need.
Tracking Land and Facilities Measures

- Used 2011 as baseline year
 - 2011 last year of data used in the Science Assessment to calculate nutrient loads
 - BMP implementation data reported for years 2015/2016
 - Determine BMP implementation during this time period.
Tracking Land and Facilities Measures

<table>
<thead>
<tr>
<th>BMPs</th>
<th>FSA</th>
<th>Illinois DNR</th>
<th>USDA-NRCS</th>
<th>Illinois EPA</th>
<th>NASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced N rate from background to MRTN on 10 percent of acres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Nitrification inhibitor with all fall-applied fertilizer on tile-drained corn acres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Split application of 50 percent fall and 50 percent spring on tile-drained corn acres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Spring-only application on tiled-drained corn acres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Split application of 40 percent fall, 10 percent pre-plant, and 50 percent side dress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Cover crops on all corn/soybean tile-drained acres</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Cover crops on all corn/soybean non-tiled acres</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Bioreactors on 50 percent of the tile-drained land</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Wetlands on 25 percent of tile-drained land</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Buffers on all applicable crop land</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Perennial/energy crops equal to pasture/hay acreage from 1987</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Perennial/energy crops on 10 percent of tile-drained land</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Conservation Reserve Program

Table 4.4. Acres in nutrient BMPs reported by producers to FSA

<table>
<thead>
<tr>
<th></th>
<th>2011 Acres</th>
<th>2015 Acres</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover crops(^1)</td>
<td>768</td>
<td>11,064</td>
<td>1,340%</td>
</tr>
<tr>
<td>CRP Wetlands</td>
<td>57,463</td>
<td>45,790</td>
<td>-20%</td>
</tr>
<tr>
<td>CRP Buffers</td>
<td>145,813</td>
<td>279,534</td>
<td>92%</td>
</tr>
<tr>
<td>Perennial/Energy/Pasture(^2)</td>
<td>985,531</td>
<td>1,524,379</td>
<td>55%</td>
</tr>
</tbody>
</table>

- Data provided Statewide and at HUC 8 scale
Conservation Reserve Enhancement Program

Data provided Statewide and at HUC 8 scale

<table>
<thead>
<tr>
<th>Wetlands</th>
<th>2011 Acres</th>
<th>2015 Acres</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands</td>
<td>483</td>
<td>22,609</td>
<td>▲ 4,581%</td>
</tr>
<tr>
<td>Buffers</td>
<td>202</td>
<td>17,893</td>
<td>▲ 8,758%</td>
</tr>
<tr>
<td>Perennial/Energy</td>
<td>81</td>
<td>6,043</td>
<td>▲ 7,360%</td>
</tr>
</tbody>
</table>

Table 4.5. Acres with Illinois DNR Conservation Reserve Enhancement Program Easements
Environmental Quality Incentives Program

Table 4.6. Acres enrolled in nutrient BMPs through the NRCS Environmental Quality Incentives Program 2009-2015

<table>
<thead>
<tr>
<th>Conservation Practice</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient management</td>
<td>49,932</td>
</tr>
<tr>
<td>Cover crops</td>
<td>80,659</td>
</tr>
<tr>
<td>Buffers</td>
<td>18.8</td>
</tr>
<tr>
<td>Residue and tillage management</td>
<td>22,388</td>
</tr>
<tr>
<td>Wetland restoration</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- Data provided by Illinois NRCS from a spreadsheet generated by NRCS Headquarters in D.C. for the Hypoxia Task Force.
- Data available on a HUC 12 scale, aggregated by Illinois EPA on HUC 8 scale
Conservation Stewardship Program

Agricultural Conservation Easement Program

- Statewide data only
Data provided by
- U of I/NRCS
- Voluntary Reporting
Illinois EPA Section 319 Grant Program

Table 4.7. Illinois EPA Section 319 Grant program

<table>
<thead>
<tr>
<th></th>
<th>2001-2011 Acres</th>
<th>2012-2015 Acres</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation tillage</td>
<td>9998</td>
<td>734</td>
<td>▼</td>
</tr>
<tr>
<td>Cover and green manure crop</td>
<td>3924</td>
<td>0</td>
<td>▼</td>
</tr>
<tr>
<td>Filter strip</td>
<td>8</td>
<td>13,882</td>
<td>▲</td>
</tr>
<tr>
<td>Nutrient management</td>
<td>0</td>
<td>107,061</td>
<td>▲</td>
</tr>
<tr>
<td>Wetland restoration</td>
<td>936</td>
<td>464</td>
<td>▼</td>
</tr>
</tbody>
</table>
Illinois EPA Section 319 Grant Program

Load Reductions

<table>
<thead>
<tr>
<th>Illinois EPA Section 319 Grant</th>
<th>AGRICULTURE</th>
<th>2002-2011</th>
<th>2011-2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acres</td>
<td>Nitrogen Load Reduction (lbs/year)</td>
<td>Phosphorus Load Reduction (lbs/year)</td>
</tr>
<tr>
<td>Conservation Tillage (329)</td>
<td>9998</td>
<td>47169</td>
<td>23691</td>
</tr>
<tr>
<td>Cover and Green Manure Crop (340)</td>
<td>3924</td>
<td>14827</td>
<td>1190</td>
</tr>
<tr>
<td>Filter Strip (393)</td>
<td>8</td>
<td>1360</td>
<td>725</td>
</tr>
<tr>
<td>Nutrient Management (590)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland Restoration (657)</td>
<td>936</td>
<td>5028</td>
<td>2103</td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>68,384</td>
<td>27,709</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Illinois EPA Section 319 Grant</th>
<th>AGRICULTURE</th>
<th>2011-2015</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acres</td>
<td>Nitrogen Load Reduction (lbs/year)</td>
<td>Phosphorus Load Reduction (lbs/year)</td>
</tr>
<tr>
<td>Conservation Tillage (329)</td>
<td>734</td>
<td>3913</td>
<td>2005</td>
</tr>
<tr>
<td>Filter Strip (393)</td>
<td>13882</td>
<td>329813</td>
<td>167170</td>
</tr>
<tr>
<td>Nutrient Management (590)</td>
<td>107061</td>
<td>109915</td>
<td>54325</td>
</tr>
<tr>
<td>Wetland Restoration (657)</td>
<td>464</td>
<td>2,760</td>
<td>1668</td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>446,400</td>
<td>225,168</td>
</tr>
</tbody>
</table>
National Agricultural Statistical Service
NLRS Producer Survey

- Survey developed to capture implementation done outside of cost-share programs
- Mailed to producers in July 2016
- Results published December 2016
- Compared 2011 baseline year data to 2015
Table 4.8. Fertilizer application strategies for corn on tiled acres (NASS survey result)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>2011 Acres</th>
<th>2015 Acres</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 50% fall/winter applications, with remaining nitrogen applications split between</td>
<td>1,730,000</td>
<td>2,220,000</td>
<td>▲ 28%</td>
</tr>
<tr>
<td>pre-plant and side-dress applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall/winter nitrogen was 0% of total nitrogen (all spring applications)</td>
<td>2,480,000</td>
<td>2,660,000</td>
<td>▲ 7%</td>
</tr>
<tr>
<td>Fall/winter nitrogen was 50% or less of total nitrogen</td>
<td>940,000</td>
<td>950,000</td>
<td>▲ 1%</td>
</tr>
<tr>
<td>Fall/winter nitrogen was applied with a nitrification inhibitor²</td>
<td>3,240,000</td>
<td>2,970,000</td>
<td>▼ 8%</td>
</tr>
<tr>
<td>Total acres of corn planted</td>
<td>12,600,000</td>
<td>11,700,000</td>
<td>▼ 7%</td>
</tr>
<tr>
<td>Percent of total corn acres</td>
<td>25.7%</td>
<td>25.4%</td>
<td>▼ 1%</td>
</tr>
</tbody>
</table>

Table 4.9. Acres with cover crops (NASS survey result)

<table>
<thead>
<tr>
<th>Type of Cover Crop</th>
<th>2011 Acres</th>
<th>2015 Acres</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn/soybean acres planted to cover crops on tiled ground</td>
<td>220,000</td>
<td>490,000</td>
<td>▲ 123%</td>
</tr>
<tr>
<td>Corn/soybean acres planted to cover crops on non-tiled ground</td>
<td>380,000</td>
<td>630,000</td>
<td>▲ 66%</td>
</tr>
</tbody>
</table>

Table 4.10. Acres with edge of field practices and perennial crops (NASS survey result)

<table>
<thead>
<tr>
<th>Type of Perennial Practice</th>
<th>2015 Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiled acres draining into bioreactors</td>
<td>(D)</td>
</tr>
<tr>
<td>Tiled acres draining into constructed wetlands</td>
<td>160,000</td>
</tr>
<tr>
<td>Tiled acres planted to perennial crops, including CRP plantings, hay, and miscanthus</td>
<td>230,000</td>
</tr>
</tbody>
</table>

(D) - Number withheld to avoid disclosing data for individual farms.
New Initiatives Supporting NLRS Goals

- IFB Nutrient Stewardship Mini-Grants
- 4R4U
- 4R Metrics
- Advanced Soil Health Training
- Leadership for Midwestern Watersheds
- Absentee Farmland Owners
- PCM
- Sustainable Ag Partnership
- IL Corn waters testing
- Illinois Cover Crops Program
- Field Laboratories
- MRBI and RCPP Projects
Other Measures Tracked

Resources

Outreach

Table 4.1. Summary of outreach and education events held by partner organizations in the agricultural sector in 2016

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Number of events</th>
<th>Total Reported Attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outreach (fairs, tours, community education, presentations)</td>
<td>457</td>
<td>16,000</td>
</tr>
<tr>
<td>Field days</td>
<td>130</td>
<td>3,692</td>
</tr>
<tr>
<td>Workshops</td>
<td>607</td>
<td>12,695</td>
</tr>
<tr>
<td>Conferences</td>
<td>27</td>
<td>6,935</td>
</tr>
<tr>
<td>Total</td>
<td>1,221</td>
<td>39,325</td>
</tr>
</tbody>
</table>

2016 Total = $54,834,638
What Data Do We Need In The Future?

- Tillage Data
 - Was not included in Biennial Report
What Are The Action Steps for Getting It?

- **IL Dept. of Ag Soil Transect Survey**
 - Tracks Tillage practices and acres meeting “T”
 - By county and statewide. Conducted every two years
 - Ability to track by HUC 8 watershed
 - Include summaries from previous Soil Transect Reports.
 - Reports are available online
 - Use 2011 Report as Baseline
 - Include data from 2013-2017 Reports
 - Continue performing Transect Surveys every two years.
What Data Do We Need In The Future?

- More accurate reporting of Cover Crop acres
- 2015 FSA showed 11,064 acres of farmer-reported data
- 2009-2015 EQIP data showed 80,659 acres cost-shared
- NASS Survey: 1.2M acres in 2015
- Other states using remote sensing to estimate cover crops
What Are The Action Steps for Getting It?

- Farmers report cover crop acres when reporting crop acres to FSA would be most accurate
 - Potential barriers for not reporting
 - Suggest discussing overcoming barriers with FSA, farm organizations

- Remote Sensing

- NASS Survey
What Data Do We Need In The Future?

- Track 4R metrics (Right Rate, Source, Time, Place)

What Are The Action Steps for Getting It?

- Work with IL Fertilizer and Chemical Assoc., ag retailers to define, track, and report 4R metrics
What Data Do We Need In The Future?

- Establish baseline for structural BMPS
 - Filter strips, grass waterways, etc.

What Are The Action Steps for Getting It?

- Remote sensing, mapping software, other?
What Data Do We Need In The Future

- Track voluntary implementation of other organizations programs, and individual reporting

What Are The Action Steps for Getting It?

- Develop database for organizations or individual reporting of voluntary BMP implementation.
- Work being done at national level for this through Hypoxia Task Force
Where do we go from here?

- Continue education and outreach efforts
 - Stay on message
- Target Cost-share funding, priority watersheds
- Continue and expand non-governmental cost share programs
- Scale up implementation
- CONTINUE COLLABORATIONS!
University of Illinois Extension
Watershed Coordinators

- Illinois EPA is partnering with University of Illinois Extension to hire two watershed coordinators to work in priority watersheds.
- Provide outreach and technical assistance.
- Assist local stakeholders in:
 - Watershed Planning
 - Implementation of Watershed Plans
-Coordinate local initiatives, collaborate with other organizations.
Illinois Point Source Nutrient Control

AMY DRAGOVIĆH, P.E.
MANAGER, NORTHERN MUNICIPAL UNIT, PERMIT SECTION, IEPA
Nutrient Discharges

- November 2, 2011 letter to USEPA Region 5
- Response to EPA letter concerning DO and algae impaired waters
- Steps to address the discharge of nutrients
 - Current activities
 - Enhancement to current activities
 - Future tools
Nutrient Discharges

- November 2, 2011 letter to USEPA Region 5
 - Current Activities
 - WQ standard for lakes and reservoirs
 - Effluent standard for new/expanded facilities
 - Waste load allocations in TMDL reports
 - Antidegradation assessments
 - DO effluent limits included in permits
Nutrient Discharges

November 2, 2011 letter to USEPA Region 5

Enhancement to Current Activities
- Developing nutrient TMDLs
- Additional monitoring to develop TMDLs
- Reopener clause to incorporate permit limits
- Watershed study groups
- Interim phosphorus permit limits for algae or DO impaired waters
- Identification of operational modifications
Nutrient Discharges

- November 2, 2011 letter to USEPA Region 5
- Future Tools
 - Future regulations to address nutrients
 - Nutrient Science Advisory Committee
 - Future rules filed with Illinois Pollution Control Board
MWRDGC Permit Appeal

- Calumet, Stickney and O’Brien Permits issued December 23, 2013 with 1 mg/L P limit
- Permits appealed by environmental groups
- Decision by Illinois Pollution Control Board (IPCB) that permits did not violate the Act or Board regulations
- IPCB decision appealed to Illinois Appellate Court
- Appellate Court remanded permits back to the Agency
- Illinois Appellate Court decision:
 - “Must ensure that the permit prevents discharges of pollutants having the ‘reasonable potential’ of violating Illinois water quality standards contained in the narrative statements.”
MWRDGC Settlement Agreement

- Additional special conditions
 - Chicago Area Waterways Nutrient Oversight Committee
 - Develop Implementation Plan
 - Phosphorus input reductions (point and non-point)
 - Technology based Total Phosphorus effluent limit of 0.5 mg/L by 2030
 - Feasibility study – 0.5, 0.3 and 0.1 mg/L
 - Continuous monitoring gauge at Joliet, IL
MWRDGC Permits

- Calumet, Stickney and O’Brien Permits re-issued July 6, 2017
- Included interim 1 mg/L P limit with compliance schedules
- P improvements include:
 - Converting aeration zones to anaerobic zones
 - Optimizing P removal
 - Sidestream P recovery process
 - Supplemental carbon process
 - Centrate treatment
 - Investigating use of algae to recover P
- Included settlement special conditions – 0.5 mg/L P by 2030
Nutrient Loss Reduction Strategy

- Priority Watersheds for Point Sources
 - Upper Fox River Watershed
 - Des Plaines River/DuPage River Watershed
 - Upper Sangamon River Watershed
 - Lower Rock River Watershed
 - Illinois River - Senachwine Lake Watershed

All ranked high in both Total P and nitrate-nitrogen loading.
Fox River Study Group

- Located between Stratton Dam and Illinois River
- Impairments for DO, TP and nuisance algae
- 24 Major Municipal Facilities in Watershed
- NPDES conditions
 - Interim annual effluent limit of 1 mg/L P
 - Submit P removal feasibility report
 - Implementation Plan
 - Optimize the existing facilities
 - Compliance schedule for P limit (~4 ½ years)
- Permits issued in 2014/2015 for 3 years
Feasibility Report results:
- Most facilities would be adding chemicals to meet 1 mg/L P effluent limit
- Biological phosphorus removal/chemical backup for lower limits

Permits are in the process of being renewed

Additional requirements:
- Update Implementation Plan with improved modelling
- Additional projects for next permit cycle
- Optimization of existing facilities
- Lower technology based effluent limit for Total P with exceptions
DuPage River/Salt Creek Workgroup

- 24 Major Municipal Facilities in Watershed
- Address DO and offensive condition impairments
- NPDES conditions
 - Dam Removals
 - Collect additional data and update model
 - Submit P feasibility study
 - Submit P optimization evaluation plan
 - Participate in Chloride Reduction Program
 - Compliance schedule for P Limit (11 years for Bio-P removal)
- Submit Nutrient Implementation Plan – December 31, 2023
DuPage River/Salt Creek Workgroup

Feasibility Report results:

- Most facilities would be adding chemicals to meet 1 mg/L P effluent limit
- Biological phosphorus removal/chemical backup for lower effluent limits
Other Watershed Workgroups

- Des Plaines River Watershed Workgroup
- Lower DuPage River Watershed Coalition
- Hickory Creek Watershed Planning Group
- Lower Des Plaines Watershed Group
Negotiations between IAWA and Environmental Groups

- To address “reasonable potential” of violating narrative WQ standards
- Promoting biological nutrient removal
- Future conditions in NPDES permits for all major facilities may include:
 - Technology based effluent limit of 0.5 mg/L by 2030
 - Exceptions include not economically feasible
 - Implementation Plan if impaired waterbody or if waterbody has characteristics of an impaired waterbody
Questions?

Amy Dragovich, P.E.
Manager, Northern Municipal Unit, Permit Section
Illinois Environmental Protection Agency
1021 North Grand Ave East
Springfield, IL 62702

217/782-0610
amy.dragovich@illinois.gov
Tracking Urban Stormwater BMPs

Reid Christianson, PE, PhD
University of Illinois

Inaugural Illinois NLRS Workshop
November 29, 2017
New Development vs. Retrofits

• New Development
 • Post-Construction Runoff Control
 • Minimum Control Measure
 • For simplicity, say this is net neutral

• Existing Development
 • Only option is to “retrofit”, or put stormwater control where there was none before
New Development ~2010

Stormwater control is included in the design with a pond to control peak flow leaving the site.
New Development ~2010

Stormwater control is included in the design with a pond to control peak flow leaving the site.
Established Development

No stormwater control is present. If we want to add, we have to "retrofit"
Rain Gardens

[Image of Rain Gardens]

https://prairierivers.org/raingardens/

Grade Control

[Image of Grade Control]

Stormwater Wetlands

[Image of Stormwater Wetlands]

http://chesapeakestormwater.net/download/3280/

Urban Filter Strip

[Image of Urban Filter Strip]

http://chesapeakestormwater.net/download/4323/

Permeable Pavement

[Image of Permeable Pavement]

http://vwrrc.vt.edu/swc/NonPBMPSpecsMarcH11/VASWMBMPSpec7PERMEABLEPAVEMENT.html
Established Development

No stormwater control is present. If we want to add, we have to "retrofit".
Life of an Urban BMP

<table>
<thead>
<tr>
<th>Practice</th>
<th>Life (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain Garden</td>
<td>5 to 10</td>
</tr>
<tr>
<td>Sediment Basin</td>
<td>10 to 20</td>
</tr>
<tr>
<td>Grade Stabilization Structure</td>
<td>5 to 10</td>
</tr>
<tr>
<td>Urban Stormwater Wetlands</td>
<td>20 to 50</td>
</tr>
<tr>
<td>Urban Filter Strip</td>
<td>>10</td>
</tr>
<tr>
<td>Grass-Lined Channels</td>
<td>10 to 20</td>
</tr>
<tr>
<td>Porous Pavement</td>
<td>15 to 20</td>
</tr>
</tbody>
</table>
Where are we now?

- 7 per year (2002-2011)
- 108 per year (2012-2015)

Number of Illinois EPA 319 urban stormwater projects (2002-2011 and 2012-2015)

- Infiltration Trench
- Wetland
- Grade Structure
- Rain Garden
Where are we now?

Figure 6.2. Calculated total nitrogen and total phosphorus load reduction (lbs/year) from Illinois EPA 319 urban non-point source projects
Where are we now?

[Bar chart showing load reduction (lbs/year) for Total N and Total P, with categories for 2002-2011 and 2012-2015]
Where can we go?

Table 6.5. Urban non-point source programs and projects working toward Illinois NLRS goals

<table>
<thead>
<tr>
<th>Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 319</td>
<td>69</td>
</tr>
<tr>
<td>Municipal Separate Storm Sewer System Permit</td>
<td>Illinois NLRS p. 7-2</td>
</tr>
<tr>
<td>Clean Water Initiative and State Revolving Fund</td>
<td>74</td>
</tr>
<tr>
<td>Illinois Green Infrastructure Grants</td>
<td>71</td>
</tr>
<tr>
<td>Rain Barrel Programs</td>
<td>71</td>
</tr>
<tr>
<td>Streambank Stabilization and Restoration Program</td>
<td>Illinois NLRS p. 7-4</td>
</tr>
<tr>
<td>Total Maximum Daily Load</td>
<td>Illinois NLRS p. 7-4</td>
</tr>
<tr>
<td>Calumet Stormwater Collaborative</td>
<td>75</td>
</tr>
</tbody>
</table>

Bold type and page number signify an update in this report. Details about programs listed in non-bold type and page number can be found in the strategy.
Strategic Actions

- Urban Stormwater Workgroup
 - Nutrient info for MS4s
 - Let us tell the *whole* story
- Stormwater Management Planning
- Storm Sewer System Mapping
- Encourage Stormwater Management Training
Future Data Sources?

- County/town/city/village inventory?
- Watershed plans?
- Private Groups
 - Non Profits
 - Foundations
 - Citizens
Suggested Minimum Measures

- Location
- Practice type
- Land area treated by BMP
 - Acres treated
- When the practice was installed
 - And program used for funding
 - 319
 - IGIG
 - Private
- Expected life of the practice
- Funding, if applicable
QUESTIONS?