FINAL REPORT

Upper La Moine River Watershed TMDL Final Stage 1 Report Prepared for Illinois EPA

July 2017

Section 1 Goals and Objectives for the Upper La Moine River Watershed	1-1
1.1 Total Maximum Daily Load Overview	
1.2 TMDL Goals and Objectives for the Upper La Moine River Watershed	
1.3 Report Overview	1-6
Section 2 Upper La Moine River Watershed Description	2-1
2.1 Upper La Moine River Watershed Location	
2.2 Topography	
2.3 Land Use	2-1
2.4 Soils	2-7
2.4.1 Upper La Moine River Watershed Soil Characteristics	2-7
2.5 Population	2-11
2.6 Climate, Pan Evaporation, and Streamflow	2-15
2.6.1 Climate	2-15
2.6.2 Pan Evaporation	
2.6.3 Streamflow	2-16
Section 3 Upper La Moine River Watershed Public Participation	3-1
3.1 Upper La Moine River Watershed Public Participation and Involvement	
Section 4 Upper La Moine River Watershed Water Quality Standards and Guide	lines 4-1
4.1 Illinois Water Quality Standards	
4.2 Designated Uses	
4.2.1 General Use	
4.3 Illinois Water Quality Standards	
4.4 Water Quality Guidelines	
4.5 Potential Pollutant Sources	
Section 5 Upper La Moine River Watershed Characterization	5-1
5.1 Water Quality Data	
5.1.1 Stream Water Quality Data	
5.1.1.1 Chloride	
5.1.1.2 Dissolved Oxygen	5-5
5.1.1.3 Manganese	5-13
5.1.1.4 Ammonia	5-19
5.1.1.5 Total Suspended Solids	5-19
5.1.1.6 Total Phosphorus	5-27
5.1.1.7 Sedimentation/Siltation	
5.1.2 Carthage Lake Water Quality Data	
5.1.2.1 Total Phosphorus in Carthage Lake	
5.1.2.2 Total Suspended Solids in Carthage Lake	
5.2 Lake Characteristics	
5.2.1 Carthage Lake	
5.3 Point Sources	
5.4 Nonpoint Sources	5-45

5.4.1 Crop Information	5-45
5.4.2 Animal Operations	5-47
5.4.3 Septic Systems	
5.4.4 Internal Phosphorus Loading in Lakes	5-48
5.5 Watershed Studies and Other Watershed Information	
Section 6 Approach to Developing TMDL and Identification of Data Needs	6-1
6.1 Simple and Detailed Approaches for Developing TMDL	6-1
6.2 Additional Data Needs for TMDL and LRS Development in the Upper La Moine River	
Watershed	6-1
6.3 Approaches for Developing TMDLs and LRSs for Stream Segments in Upper La Moine	
Watershed	6-2
6.3.1 Recommended Approach for Ammonia, Chloride, Total Phosphorus, Manganes	e,
Sedimentation/Siltation and Total Suspended Solids in Impaired Stream Segments	6-2
6.3.2 Recommended Approach for Dissolved Oxygen TMDLs in Impaired Stream	
Segments	6-3
6.4 Approaches for Developing TMDL and LRS for Carthage Lake	6-3
6.4.1 Recommended Approach for Total Phosphorus TMDL	6-3
6.4.2 Recommended Approach for Suspended Sediment LRS	6-4

Appendices

Appendix A – Land Use Categories Appendix B – Soil Characteristics Appendix C – Water Quality Data Appendix D – Public Comments

List of Tables

1-1	Impaired Water Bodies in Upper La Moine River Watershed	1-5
2-1	Land Cover and Land Use in Upper La Moine River Watershed	
2-2	Average Monthly Climate Data for La Harpe, Illinois	2-15
2-3	USGS Stream Gages	2-16
4-1	Summary of Numeric Water Quality Standards for Potential Causes	of Lake
	Impairments in Upper La Moine River Watershed	
4-2	Summary of Numeric Water Quality Standards for Potential Causes	of Stream
	Impairments in Upper La Moine River Watershed	
4-3	Summary of Water Quality Guidelines in Upper La Moine Watershee	d 4-3
4-4	Impaired Water Bodies	
5-1	Existing Chloride Data for Drowning Fork (DGLC-01)	5-5
5-2	Dissolved Oxygen Data for Impaired Stream Segments	5-5
5-3	Dissolved Manganese Data for Impaired Stream Segments	5-13
5-4	Total Ammonia as Nitrogen Data for South Branch La Moine River S	egment
	(DGZR)	5-19
5-5	Total Suspended Solids Data for Impaired Stream Segments	5-19
5-6	Total Phosphorus Data for Impaired Stream Segments	5-27
5-7	NVSS Data for Impaired Stream Segments	5-27
5-8	Data Inventory for Impairment at Carthage Lake	5-35
5-9	Total Phosphorus at 1-ft Depth in Carthage Lake (RLE)	5-35
5-10	Total Suspended Solids Data for Carthage Lake (RLE)	5-39
5-11	Permitted Facilities Discharging within the Upper La Moine River W	/atershed
		5-45
5-12	Tillage Practices in Hancock County, Illinois	5-46
5-13	Tillage Practices in McDonough County, Illinois	5-46
5-14	Tillage Practices in Henderson County, Illinois	5-46
5-15	Tillage Practices in Warren County, Illinois	5-46
5-17	Hancock County Animal Population	5-47
5-18	McDonough County Animal Population	5-47
5-19	Henderson County Animal Population	5-48
5-20	Warren County Animal Population	5-9
6-1	Data Availability and Data Needs for TMDL/LRS Development in the	e Upper La
	Moine River Watershed	

List of Figures

1-1	Upper La Moine River TMDL Watershed	
2-1	Upper La Moine River Watershed Elevation	2-3
2-2	Upper La Moine River Watershed Land Use	2-5
2-3	Upper La Moine River Watershed Soils	2-9
2-4	Upper La Moine River Watershed k-factor Ranges	2-13
2-5	Upper La Moine River Watershed Active USGS Gages	2-17
5-1	Upper La Moine River Water Quality Stations	.5-3
5-2	Chloride Drowning Fork (DGLC)	.5-7
5-3	Dissolved Oxygen Rock Creek (DGO-01) and La Harpe Creek (DGP-01)	.5-9
5-4	Dissolved Oxygen Prairie Creek (DGZN-01) and South Branch La Moine Riv	/er
	(DGZR)	5-11
5-5	Dissolved Manganese La Harpe Creek (DGP-01)	5-15
5-6	Dissolved Manganese Baptist Creek (DGPC-01)	5-17
5-7	Ammonia South Branch La Moine River (DGZR)	5-21
5-8	Total Suspended Solids Drowning Fork (DGLC-01)	5-23
5-9	Total Suspended Solids Prairie Creek (DGZN-01)	5-25
5-10	Total Phosphorus Drowning Fork (DGLC-01)	5-29
5-11	Total Phosphorus Prairie Creek (DGZN-01) and South Branch La Moine Riv	/er
	(DGZR)	5-31
5-12	Non-Volatile Suspended Solids Drowning Fork (DGLC-01)	5-33
5-13	Total Phosphorus Carthage Lake (RLE)	5-37
5-14	Total Suspended Solids Carthage Lake (RLE)	5-41
5-15	Upper La Moine River NPDES Locations5	5-43

Acronyms

BMPs	best management practices
CAFO	Concentrated Animal Feeding Operation
cfs	cubic feet per second
cfu	colony forming units
CRP	Conservation Reserve Program
CWA	Clean Water Act
DMR	discharge monitoring report
DO	dissolved oxygen
fIBI	fish Index of Biotic Integrity
GIS	geographic information system
IDA	Illinois Department of Agriculture
Illinois EPA	Illinois Environmental Protection Agency
IPCB	Illinois Pollution Control Board
ISWS	Illinois State Water Survey
LA	Load Allocation
LC	Loading Capacity
LRS	load reduction strategy
MBI	Macroinvertebrate Biotic Index
mg/L	milligrams per liter
mĪBI	macroinvertebrate Index of Biotic Integrity
μg/L	micrograms per liter
mL	milliliters
MOS	Margin of Safety
NA	not applicable
NASS	National Agricultural Statistics Service
NCDC	National Climatic Data Center
ND	non-detect
NED	National Elevation Dataset
NPDES	National Pollutant Discharge Elimination System
NRCS	Natural Resources Conservation Service
RC	Reserve Capacity
SSURGO	Soil Survey Geographic
TMDL	total maximum daily load
TSS	total suspended solids
USDA	United States Department of Agriculture
USEPA	United States Environmental Protection Agency
USGS	U.S. Geological Survey
USLE	Universal Soil Loss Equation
VSS	volatile suspended solids
WLA	Waste Load Allocation
· · L/ 1	Waste Load / mocation

Section 1

Goals and Objectives for the Upper La Moine River Watershed

1.1 Total Maximum Daily Load Overview

A total maximum daily load, or TMDL, is a calculation of the maximum amount of a pollutant that a water body can receive and still meet water quality standards. TMDLs are a requirement of Section 303(d) of the Clean Water Act (CWA). To meet this requirement, the Illinois Environmental Protection Agency (Illinois EPA) must identify water bodies not meeting water quality standards and then establish TMDLs for restoration of water quality. Illinois EPA develops a list known as the "303(d) list" of water bodies not meeting water quality standards every 2 years, and it is included in the Integrated Water Quality Report. Water bodies on the 303(d) list are then targeted for TMDL development. The Illinois EPA's most recent Integrated Water Quality Report was submitted to the United States Environmental Protection Agency (USEPA) in July 2016. In accordance with USEPA's guidance, the report assigns all waters of the state to one of five categories. 303(d) listed water bodies make up category five in the integrated report (Appendix A of the Integrated Report).

In general, a TMDL is a quantitative assessment of water quality impairments, contributing potential sources, and pollutant reductions needed to attain water quality standards. The TMDL specifies the amount of pollutant or other stressor that needs to be reduced to meet water quality standards, allocates pollutant control or management responsibilities among sources in a watershed, and provides a scientific and policy basis for taking actions needed to restore a water body.

Water quality standards are laws or regulations that states authorize to enhance water quality and protect public health and welfare. Water quality standards provide the foundation for accomplishing two of the principal goals of the CWA. These goals are:

- Restore and maintain the chemical, physical, and biological integrity of the nation's waters
- Where attainable, to achieve water quality that promotes protection and propagation of fish, shellfish, and wildlife, and provides for recreation in and on the water

Water quality standards consist of three elements:

- The designated beneficial use or uses of a water body or segment of a water body
- The water quality criteria necessary to protect the use or uses of that particular water body
- An antidegradation policy

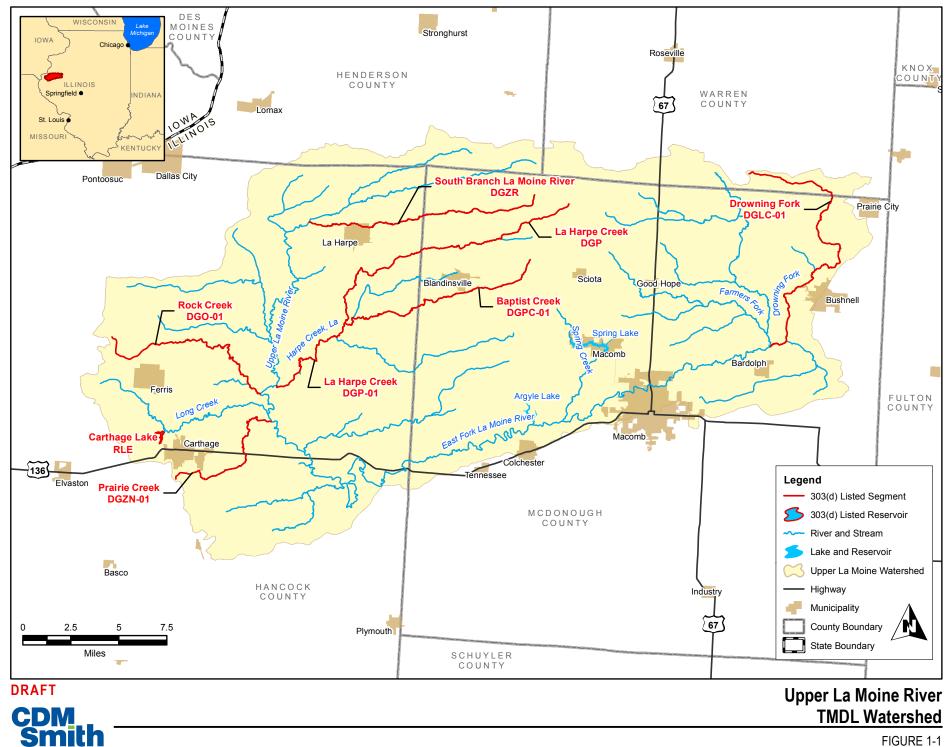
Examples of designated uses are primary contact (swimming), protection of aquatic life, and public and food processing water supply. Water quality criteria describe the quality of water that will support a designated use. Water quality criteria can be expressed as numeric limits or as a narrative statement. Antidegradation policies are adopted so that water quality improvements are conserved, maintained, and protected.

1.2 TMDL Goals and Objectives for the Upper La Moine River Watershed

The Illinois EPA has a three-stage approach to TMDL development. The stages are:

Stage 1 – Watershed Characterization, Data Analysis, Methodology Selection

Stage 2 - Data Collection (optional)


Stage 3 – Model Calibration, TMDL Scenarios, Implementation Plan

This report addresses Stage 1 TMDL development for the Upper La Moine River watershed. Stages 2 and 3 will be conducted upon completion of Stage 1. Stage 2 is optional as data collection may not be necessary if additional data are not required to establish the TMDL.

Following this process, the TMDL goals and objectives for the Upper La Moine River watershed will include developing TMDLs for all impaired water bodies within the watershed, describing all of the necessary elements of the TMDL, developing an implementation plan for each TMDL, and gaining public acceptance of the process. Following are the impaired water body segments in the Upper La Moine River watershed:

- Drowning Fork (DGLC-01)
- Rock Creek (DGO-01)
- La Harpe Creek (DGP and DGP-01)
- Baptist Creek (DGPC-01)
- Prairie Creek (DGZN-01)
- South Branch La Moine River (DGZR)
- Carthage Lake (RLE)

The impaired water body segments are shown on **Figure 1-1**. There are seven impaired stream segments and one impaired reservoir within the Upper La Moine River watershed for which TMDLs and/or load reduction strategies (LRSs) are being developed. **Table 1-1** lists the water body segment, potential causes of impairment, use description and potential sources of impairment for the water body.

Segment ID	Segment Name	Potential Causes of Impairment	Use Description	Potential Sources (as identified by the 2016 303 (d) list)
Drowni		Chloride	Aquatic Life	Source Unknown
	Drowning	Phosphorus (Total)	Aquatic Life	Crop Production (crop land or dry land), Municipal point source discharges
DGLC-01	Fork	Sedimentation/Siltation	Aquatic Life	Crop Production (crop land or dry land)
		Total Suspended Solids (TSS)	Aquatic Life	Crop Production (crop land or dry land), Municipal point source discharges
DGO-01	Rock Creek	Dissolved Oxygen	Aquatic Life	Source Unknown
	La Harpe	Dissolved Oxygen	Aquatic Life	Source Unknown
DGP	Creek	Manganese	Aquatic Life	Source Unknown
DGP-01	La Harpe	Dissolved Oxygen	Aquatic Life	Source Unknown
DGP-01	Creek	Manganese	Aquatic Life	Source Unknown
DGPC-01	Baptist Creek	Manganese	Aquatic Life	Source Unknown
		Dissolved Oxygen	Aquatic Life	Municipal point source discharges
DGZN-01 Prai	Prairie Creek	Phosphorus (Total)	Aquatic Life	Crop Production (crop land or dry land), Municipal point source discharges
		Total Suspended Solids (TSS)	Aquatic Life	Crop Production (crop land or dry land)
		Ammonia (Total)	Aquatic Life	Municipal point source discharges
DGZR	South Branch La Moine	Dissolved Oxygen	Aquatic Life	Municipal point source discharges
DGZR	River	Manganese	Aquatic Life	Source Unknown
		Phosphorus (Total)	Aquatic Life	Municipal point source discharges
RLE	Carthage Lake	Phosphorus (Total)	Aesthetic Quality	Agriculture, Internal nutrient recycling, Crop Production (crop land or dry land), Golf Courses, Other recreational pollution sources, Runoff from Forest/Grassland/Parkland
		Total Suspended Solids (TSS)	Aesthetic Quality	Crop Production (crop land or dry land), Impacts from hydrostructure flow regulation/modification, Littoral/shore area modifications (non-riverine), Other recreational pollution sources, Runoff from Forest/Grassland/Parkland, Site clearance (land development or redevelopment)

Table 1-1 Impaired Water Bodies in Upper La Moine River Watershed

Bold Causes of Impairment have numeric water quality standards and TMDLs will be developed. Italicized Causes of Impairment do not have numeric water quality standards and an LRS will be developed where appropriate. Some italicized causes of impairment may not have an LRS developed as it is likely that implementing strategies to reduce the loading of other parameters of concern (e.g. reducing phosphorus loading to lakes) will result in reduced loading of additional parameters of concern (e.g. Total Suspended Solids and/or turbidity in lakes).

Illinois EPA is currently only developing TMDLs for parameters that have numeric water quality standards. For potential causes that do not have numeric water quality standards as noted in Table 1-1, TMDLs will be deferred until those criteria are developed. However, until numeric criteria are adopted, LRSs will be developed using watershed-specific target values that have been established by Illinois EPA. In addition, some of these potential causes may be addressed by implementation of controls for the pollutants with numeric water quality standards.

The TMDL for the segments listed above will specify the following elements:

• Loading Capacity (LC) or the maximum amount of pollutant loading a water body can receive without violating water quality standards

- Waste Load Allocation (WLA) or the portion of the TMDL allocated to existing or future point sources
- Load Allocation (LA) or the portion of the TMDL allocated to existing or future nonpoint sources and natural background
- Margin of Safety (MOS) or an accounting of uncertainty about the relationship between pollutant loads and receiving water quality
- Reserve Capacity (RC) or a portion of the load explicitly set aside to account for growth in the watershed

These elements are combined into the following equation:

 $TMDL = LC = \Sigma WLA + \Sigma LA + MOS + RC$

Where target criteria are available for parameters without established numeric criteria, LRSs will be developed that include a LC, reductions needed to meet the LC, and a MOS and/or RC where applicable. LRSs differ from TMDLs in that the allowable load is not broken out between point and nonpoint sources. Both TMDL and LRS development will also take into account the seasonal variability of pollutant loads so that water quality standards are met during all seasons of the year. Also, reasonable assurance that the TMDLs and LRSs will be achieved will be described in the implementation plan. The implementation plan for the Upper La Moine River watershed will describe how water quality standards and targets will be met and attained. This implementation plan will include recommendations for implementing best management practices (BMPs), cost estimates, institutional needs to implementation activities.

1.3 Report Overview

The remaining sections of this report contain:

- Section 2 Upper La Moine River Watershed Characteristics provides a description of the watershed's location, topography, geology, land use, soils, population, and hydrology.
- Section 3 Public Participation and Involvement discusses public participation activities that will occur throughout TMDL development.
- Section 4 Upper La Moine River Watershed Water Quality Standards defines the water quality standards and water quality guidelines for the impaired water bodies.
- Section 5 Upper La Moine River Watershed Characteristics presents the available water quality data needed to develop TMDLs and LRSs, discusses the characteristics of the impaired stream segments in the watershed, and also describes the point and nonpoint sources with potential to contribute to the watershed load.
- Section 6 Approach to Developing TMDL and Identification of Data Needs makes recommendations for the models and analysis that are needed for TMDL and LRS development and also suggests segments for Stage 2 data collection.

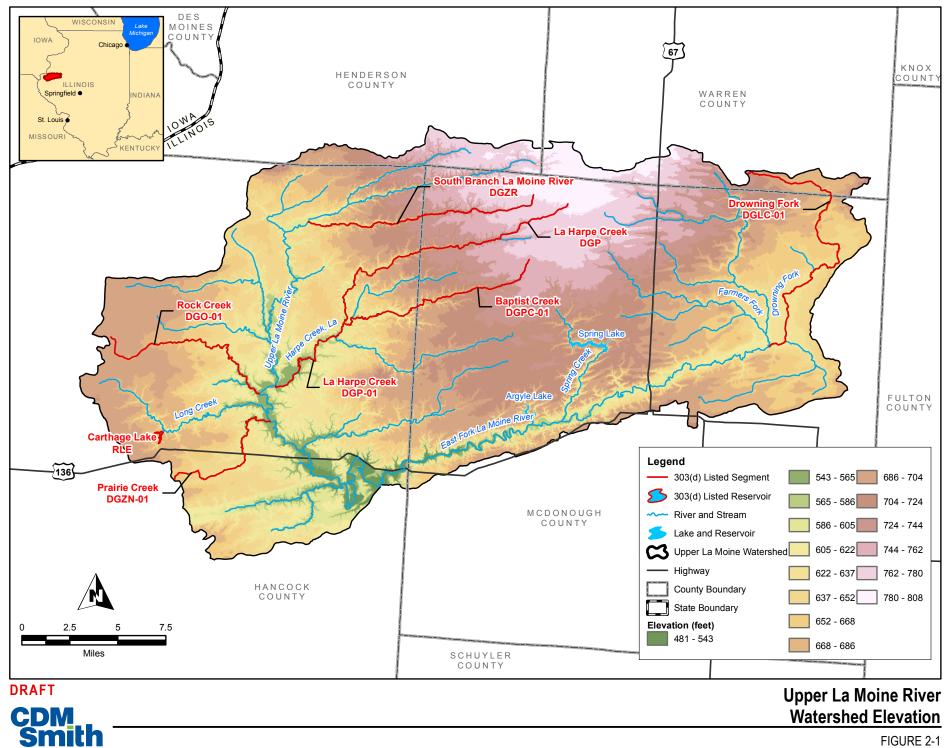
Section 2

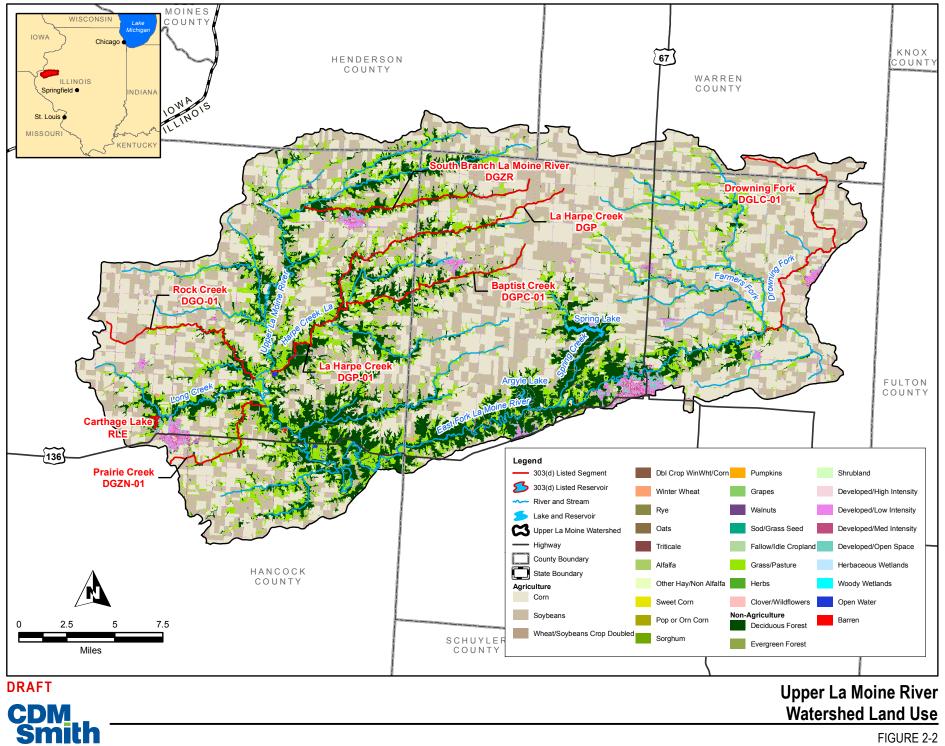
Upper La Moine River Watershed Description

2.1 Upper La Moine River Watershed Location

The Upper La Moine River watershed (shown on **Figure 1-1**) is located in west-central Illinois and drains approximately 369,000 acres within the state of Illinois. Approximately 182,300 acres (49.4 percent of the total watershed) lie in McDonough County, 164,200 acres lie in Hancock County (44.5 percent of the total watershed), 12,600 acres lie in Warren County (3.4 percent of the total watershed), and 9,800 acres lie in Henderson County (2.7 percent of the total watershed).

2.2 Topography


Topography is an important factor in watershed management because stream types, precipitation, and soil types can vary dramatically by elevation. National Elevation Dataset (NED) coverages containing 30-meter grid resolution elevation data are available from the U.S. Geological Survey (USGS) for each 1:24,000-topographic quadrangle in the United States. Elevation data for the Upper La Moine River watershed were obtained by overlaying the NED grid onto the geographic information system (GIS)-delineated watershed. **Figure 2-1** shows the elevations found within the watershed. Elevation in the Upper La Moine River watershed ranges from approximately 800 feet above sea level in the north-central portion of the watershed to 480 feet above sea level where the East Fork La Moine River meets the Upper La Moine River.


2.3 Land Use

Land use data for the Upper La Moine River watershed were extracted from the U.S. Department of Agriculture's (USDA) National Agriculture Statistics Service (NASS) 2014 Cropland Data Layer (CDL) (USDA, 2016). The CDL is a raster based, geo-referenced, crop-specific land cover data layer created to provide acreage estimates to the Agricultural Statistics Board for the state's major commodities and to produce digital, crop-specific, categorized geo-referenced output products. This information is made available to all agencies and to the public free of charge and represents the most accurate and up-to-date land cover datasets available at a national scale. The most recent available CDL dataset was produced in 2014 and includes 32 separate land use classes applicable to the watershed. The available resolution of the land cover dataset is 30 square meters. The 2014 CDL and extensive metadata are available at http://www.nass.usda.gov/Research and Science/Cropland/SARS1a.php.

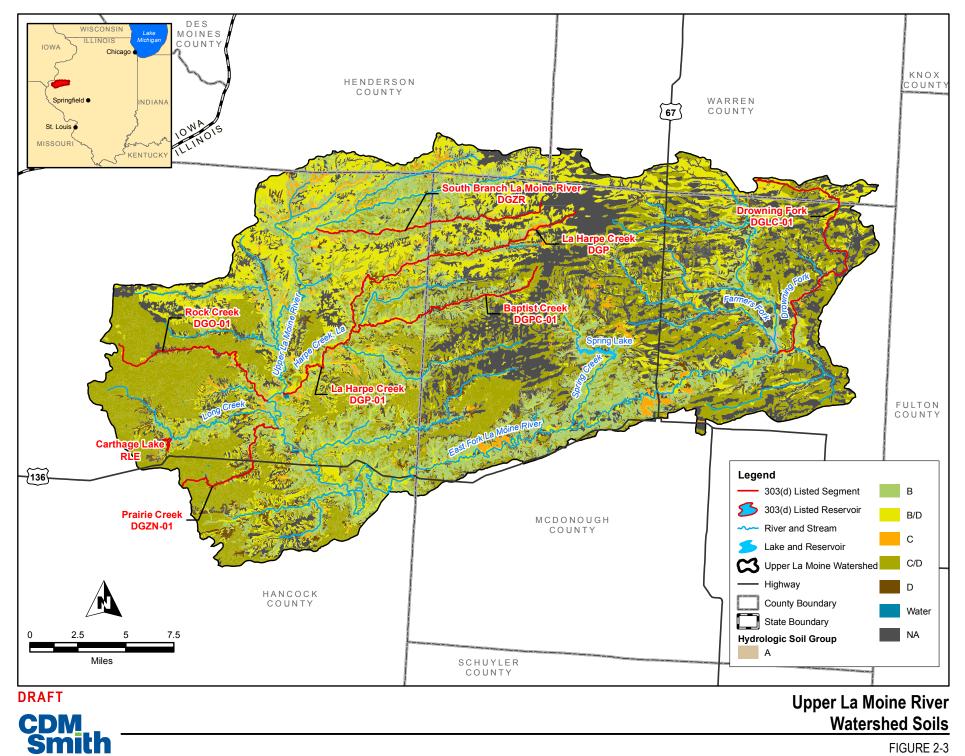
Land use characteristics of the watershed were determined by overlaying the Illinois Statewide 2014 CDL data layers onto the GIS-delineated watershed. **Table 2-1** contains the main categories of land uses contributing to the Upper La Moine River watershed, based on the 2014 CDL land cover categories, and also includes the area of each land cover category and percentage of the watershed area. **Figure 2-2** illustrates the land uses of the watershed. Appendix A contains a table of all land uses in the watershed.

USDA/NASS Land Use Cropland Category	Acres	Percentage
Corn	137,055	37%
Soybeans	104,627	28%
Deciduous Forest	59,764	16%
Grass/Pasture	42,463	12%
Developed/Low Intensity	11,458	3%
Developed/Open Space	7,331	2%
All others	6,351	2%
Total	369,049	

The land cover data reveal that 243,829 acres, representing 66 percent of the total watershed area, are devoted to agricultural activities. Corn and soybean make up 99% of the agricultural land use within the watershed. Forests, woodland, grasslands, and shrubs cover 28 percent of the watershed (102,371 acres). Approximately 6 percent of the watershed area (21,764 acres) is developed, urbanized land. The remaining watershed is wetland or open water.

2.4 Soils

Soils data are available through the Soil Survey Geographic (SSURGO) database. For SSURGO data, field mapping methods using national standards are used to construct the soil maps. Mapping scales generally range from 1:12,000 to 1:63,360 making SSURGO the most detailed level of soil mapping done by the Natural Resources Conservation Service (NRCS).


Attributes of the spatial coverage can be linked to the SSURGO databases, which provide information on various chemical and physical soil characteristics for each map unit and soil series. Of particular interest for TMDL development are the hydrologic soil groups as well as the K-factor of the Universal Soil Loss Equation (USLE). The following sections describe and summarize the specified soil characteristics for the Upper La Moine River watershed.

2.4.1 Upper La Moine River Watershed Soil Characteristics

Appendix B contains a table of the SSURGO soil series for the Upper La Moine River watershed. A total of 123 soil types exist in the watershed. The most common type—Ipava silt loam (0 to 2 percent slopes) – covers 17 percent of the watershed. The second most common type – Sable silty clay loam (0 to 2 percent slopes) covers 11% of the watershed. Soils containing "clay" in some part of the classification name cover roughly 10% of the watershed area. All other individual soil types each represent less than 6 percent of the total watershed area. The table in Appendix B also contains the area, dominant hydrologic soil group, and k-factor range. Each of these characteristics is described in more detail in the following paragraphs.

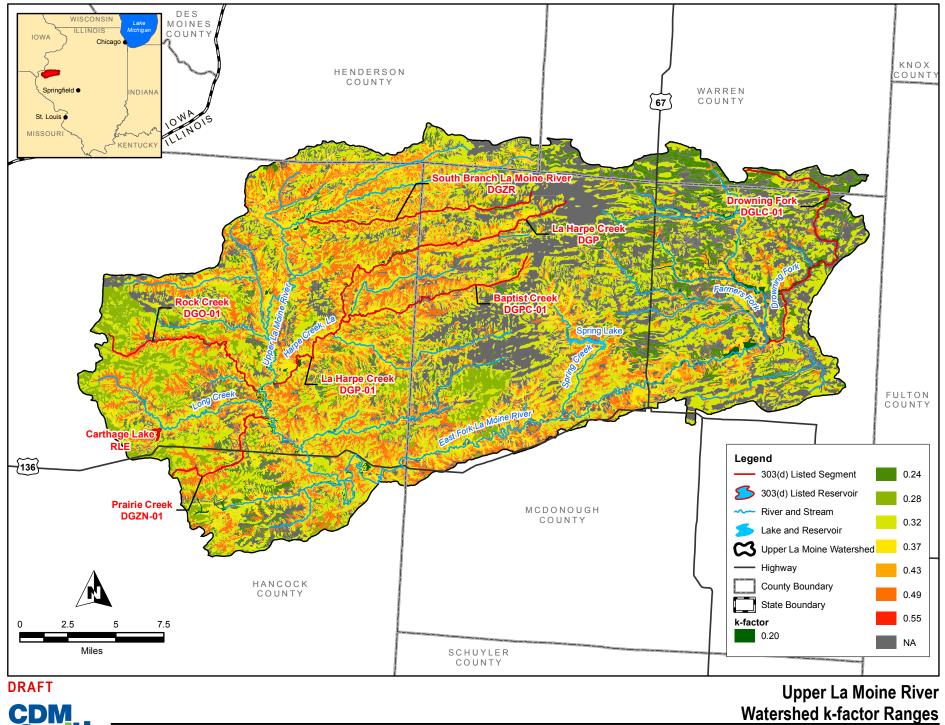
Figure 2-3 shows the hydrologic soils groups found within the Upper La Moine River watershed. Hydrologic soil groups are used to estimate runoff from precipitation. Soils are assigned to one of four groups according to the infiltration of water when the soils are thoroughly wet and receive precipitation from long-duration storms:

- Group A: Soils in this group have low runoff potential when thoroughly wet. Water is transmitted freely through the soil.
- Group B: Soils in this group have moderately low runoff potential when thoroughly wet. Water transmission through the soil is unimpeded.
- Group C: Soils in this group have moderately high runoff potential when thoroughly wet. Water transmission through the soil is somewhat restricted.
- Group D: Soils in this group have high runoff potential when thoroughly wet. Water movement through the soil is restricted or very restricted.

While hydrologic soil groups A, B, C, D, B/D, and C/D are all found within the Upper La Moine River watershed, group C/D soils are the most common type representing 35 percent of the watershed. Group C/D is a dual hydrologic soil group. Dual hydrologic soil groups can be adequately drained. The first letter applies to the drained condition and the second letter to the undrained condition. For the purpose of hydrologic soil group, adequately drained means that the seasonal high water table is kept at 24 inches below the surface¹.

A commonly used soil attribute is the K-factor. The K-factor:

Indicates the susceptibility of a soil to sheet and rill erosion by water. (The K-factor) is one of six factors used in the Universal Soil Loss Equation (USLE) to predict the average annual rate of soil loss by sheet and rill erosion. Losses are expressed in tons per acre per year. These estimates are based primarily on percentage of silt, sand, and organic matter (up to 4 percent) and on soil structure and permeability. Values of K range from 0.02 to 0.69. The higher the value, the more susceptible the soil is to sheet and rill erosion by water (NRCS 2005).


The distribution of K-factor values in the Upper La Moine River watershed range from 0.20 to 0.55 (**Figure 2-4**).

2.5 Population

The Census 2010 TIGER/Line data from the U.S. Census Bureau were reviewed along with shapefiles of census blocks that are available for the entire state of Illinois. All census blocks that have geographic center points (centroids) within the watershed were selected and tallied in order to provide an estimate of populations in all census blocks both completely and partially contained by the watershed boundary. Approximately 25,700 people reside in the Upper La Moine River watershed. The major municipalities in the watershed are shown in **Figure 1-1**. The largest urban development in the watershed is the city of Macomb, which lies partially within the watershed and has an estimated population of approximately 11,949 people within the watershed.

¹ Natural Resources Conservation Service. Part 360 Hydrology National Engineering Handbook. 2007.

CDM Smith

FIGURE 2-4

2.6 Climate, Pan Evaporation, and Streamflow **2.6.1 Climate**

Western Illinois has a temperate climate with hot summers and cold, moderately snowy winters. Monthly temperature and precipitation data from La Harpe, Illinois (station id USC00114823) were extracted from the National Climatic Data Center (NCDC) database for the years 1915 through 2015. This station was selected due to its location within the watershed and completeness of its dataset.

Table 2-2 contains the average monthly precipitation along with average high and low temperatures for the period of record. The average annual precipitation is 37 inches. May and June are historically the wettest months while January and February are the driest.

Month	Average Total Precipitation (inches)	Average Daily Maximum Temperature (degrees F)	Average Daily Minimum Temperature (degrees F)
January	1.6	33.7	14.9
February	1.5	38.1	18.9
March	2.7	50.2	28.9
April	3.8	63.5	40.0
Мау	4.2	74.1	50.6
June	5.0	83.0	60.1
July	3.9	87.4	63.9
August	3.6	85.4	61.9
September	3.9	78.4	53.8
October	2.9	67.0	42.6
November	2.4	50.9	30.7
December	2.0	37.5	19.9
Total	37.4		

Table 2-2 Average Monthly Climate Data for La Harpe, Illinois

2.6.2 Pan Evaporation

Through the Illinois State Water Survey (ISWS) website, pan evaporation data are available from nine locations across Illinois (ISWS 2009). The Perry, Illinois station was chosen to be representative of pan evaporation conditions for the Upper La Moine River watershed. The Perry station is located approximately 50 miles south of the Upper La Moine River watershed. This station was chosen due to being the closest pan evaporation station to the Upper La Moine River watershed. The average annual pan evaporation at the Perry station for the years 1996 to 2002 is 42.2 inches. Actual evaporation is typically less than pan evaporation, so the average annual pan evaporation was multiplied by 0.75 to calculate an average annual evaporation of 31.6 inches².

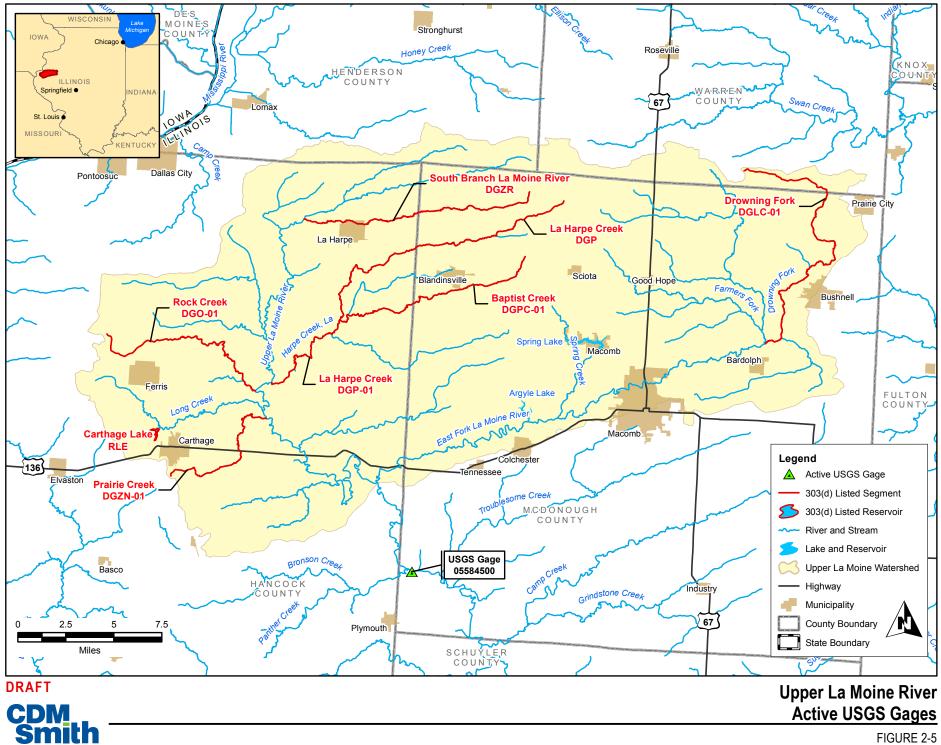
² Data provided by the Illinois State Climatologist's Office, a part of the Illinois State Water Survey (ISWS) located in Champaign and Peoria, Illinois, and on the web at www.isws.illinois.edu/atmos/statecli.

2.6.3 Streamflow

Analysis of the Upper La Moine River watershed requires an understanding of flow throughout the drainage area. There are no active USGS stream gages in the watershed and one stream gage is located approximately 5 miles south of the watershed on the La Moine River (**Figure 2-5**). **Table 2-3** summarizes the station information.

Table 2-3 USGS Stream Gages

Gage Number	Name	POR
USGS 05584500	La Moine River at Colmar, IL	1944-2015


Based on the stream gage located on the La Moine River (USGS 05584500 La Moine River near Colmar, IL), the average monthly flows in the LaMoine River range from 161 cubic feet per second (cfs) in August to 838 cfs in April (see **Figure 2-6**). The gage drains an area of 655 square miles. Historically, stream flows are highest in April and May and lowest in August and September.

Data from this gage will be used to estimate flow values for each impaired stream segment within the Upper La Moine River watershed. Estimates of flow values for impaired segments will be corrected for each segment's watershed size using the drainage area ratio method, represented by the following equation:

$$\mathbf{Q}_{gaged} \left(\frac{\mathbf{Are} \mathbf{a}_{ungaged}}{\mathbf{Are} \mathbf{a}_{gaged}} \right) = \mathbf{Q}_{ungaged}$$

where	Q_{gaged}	=	Streamflow of the gaged basin
	Q_{ungaged}	=	Streamflow of the ungaged basin
	Area _{gaged}	=	Area of the gaged basin
	$Area_{\text{ungaged}}$	=	Area of the ungaged basin

The assumption behind the equation is that the flow per unit area is equivalent in watersheds with similar characteristics. Therefore, the flow per unit area in the gaged watershed multiplied by the area of the ungaged watershed estimates the flow for the ungaged watershed. Daily discharge data are available from 1944 to 2015 and daily gage height data are available for this gage beginning in 1993.

Section 3

Upper La Moine River Watershed Public Participation

3.1 Upper La Moine River Watershed Public Participation and Involvement

Public knowledge, acceptance, and follow-through are necessary to implement a plan to meet recommended TMDLs and LRSs. It is important to involve the public as early in the process as possible to achieve maximum cooperation and counter concerns as to the purpose of the process and the regulatory authority to implement any recommendations.

Illinois EPA, along with CDM Smith, held a Stage 1 public meeting in the Upper La Moine River watershed in Macomb, Illinois on March 8, 2017. An additional public meeting will be held to present the final TMDL results and implementation plan (Stage 3). Comments received through the public meeting process are included in Appendix D. This section will be updated following the final public meeting.

Section 4

Upper La Moine Water Quality Standards and Guidelines

4.1 Illinois Water Quality Standards

Water quality standards are developed and enforced by the state to protect the "designated uses" of the state's waterways. In the state of Illinois, water quality standards are established by the Illinois Pollution Control Board (IPCB). Illinois is required to update water quality standards every 3 years in accordance with the CWA. The standards requiring modifications are identified and prioritized by Illinois EPA, in conjunction with USEPA. New standards are then developed or revised during the 3-year period.

Illinois EPA is also responsible for developing scientifically based water quality criteria and proposing them to the IPCB for adoption into state rules and regulations. The Illinois water quality standards are established in the Illinois Administrative Rules Title 35, Environmental Protection; Subtitle C, Water Pollution; Chapter I, Pollution Control Board; Part 302, Water Quality Standards (IPCP, 2015).

4.2 Designated Uses

The waters of Illinois are classified by designated uses, which include: General Use, Public and Food Processing Water Supplies, Lake Michigan Basin, and Secondary Contact and Indigenous Aquatic Life Use¹. The designated use applicable to the impairments within the Upper La Moine River watershed is General Use.

4.2.1 General Use

The General Use classification is defined by IPCB as standards that "will protect the state's water for aquatic life, wildlife, agricultural use, secondary contact use and most industrial uses, and ensure the aesthetic quality of the state's aquatic environment." Primary contact uses are protected for all General Use waters whose physical configuration permits such use.

4.3 Illinois Water Quality Standards

According to the Illinois EPA Integrated Report (IEPA, 2016), aquatic life use assessments in streams are typically based on the interpretation of biological information, physicochemical water data, and physical-habitat. The primary biological measures used are the fish Index of Biotic Integrity (fIBI), the macroinvertebrate Index of Biotic Integrity (mIBI) and the Macroinvertebrate Biotic Index (MBI). Physical-habitat information used in assessments includes quantitative or qualitative measures of stream-bottom composition and qualitative descriptors of channel and riparian conditions. Physicochemical water data used include measures of "conventional" parameters (e.g., dissolved oxygen [DO], pH, and temperature), priority pollutants, non-priority pollutants, and other pollutants.

¹ Illinois EPA, 2016. Illinois Integrated Water Quality Report and Section 303(d) List. http://www.epa.illinois.gov/topics/water-quality/watershed-management/tmdls/303d-list/index

Tables 4-1 and **4-2** present the numeric water quality standards of the potential causes of impairment for both lakes and rivers in the Upper La Moine River watershed. Only constituents with numeric water quality standards will have TMDLs developed at this time.

Table 4-1 Summary of Numeric Water Quality Standards for Potential Causes of Lake Impairments in Upper La Moine River Watershed

Parameter	Units	General Use Water Quality Standard	Regulatory Reference
Phosphorus (Total)	mg/L	0.05 ⁽¹⁾	302.205

mg/L = milligrams per liter

⁽¹⁾ Standard applies to inland lakes and reservoirs (greater than 20 acres) and in any stream at the point where it enters any such lake or reservoir.

Parameter	Units	General Use Water Quality Standard	Regulatory Reference
Chloride (total)	mg/L	500	302.208(g)
Dissolved Oxygen	mg/L	 March through July ≥5.0 minimum & ≥6.0 7-day daily mean averaged over 7 days August through February ≥3.5 minimum, ≥4.0 7-day minimum averaged over 7 days & ≥5.5 30-day daily mean⁽¹⁾ 	302.206(b)
Manganese	μg/L	Dissolved: Acute = $e^{A+Bln(H)} X 0.9812^*$ where A = 4.9187 and B = 0.7467 Chronic = $e^{A+Bln(H)} X 0.9812^*$ where A = 4.0635 and B = 0.7467	302.208(e)
Ammonia (Total as N)	mg/L	15 ¹	302.212(a)

Table 4-2 Summary of Numeric Water Quality Standards for Potential Causes of Stream Impairments in Upper La Moine River Watershed

 μ g/L = micrograms per liter

H = hardness

* = Conversion factor multiplier for dissolved metals

1 = 302.212(b) provides further information on detailed calculations for determining the acute and chronic standards for ammonia

4.4 Water Quality Guidelines

In addition to the water quality standards provided above, the Illinois EPA has also established water quality guidelines for several parameters. Water quality guidelines are target values used by Illinois EPA during assessments for parameters that do not have numerical water quality criteria. Load reduction strategies (LRSs) will be developed using these watershed-specific targets as water quality goals. LRSs for the streams in the Upper La Moine River watershed are provided in **Table 4-3**. The guidelines are based on data from all stream segments within the HUC-10 basins of the watershed, as well as stream segments which closely border the watershed in neighboring HUC-10 basins, in order to best represent the land use, hydrologic, and geologic conditions unique to the watershed. Load reduction targets were calculated using data from stream segments whose most current assessment shows full support for aquatic life and data that has passed quality assurance and quality checks within Illinois EPA and are in accordance with state and federal laws.

Parameter	Units	Load Reduction Target
Phosphorus (Total)	mg/L	0.17
Total Suspended Solids (TSS)	mg/L	50.9
Non Volatile Suspended Solids (NVSS)	mg/L	39.1

Table 4-3 Summary of Water Quality Guidelines in Upper La Moine River Watershed

4.5 Potential Pollutant Sources

In order to properly address the conditions within the Upper La Moine River watershed, potential pollutant sources must be investigated for the pollutants where TMDLs will be developed. The following is a summary of the potential sources associated with the listed potential causes for the 303(d) listed segments in this watershed.

Segment ID	Segment Name	Potential Causes of Impairment	Designated Use	Potential Sources (as identified by the 2016 303(d) list)
		Chloride	Aquatic Life	Source Unknown
DGLC-01	Drowning	Phosphorus (Total)	Aquatic Life	Crop Production (crop land or dry land), Municipal point source discharges
DGLC-01	Fork	Sedimentation/Siltation	Aquatic Life	Crop Production (crop land or dry land)
		Total Suspended Solids (TSS)	Aquatic Life	Crop Production (crop land or dry land), Municipal point source discharges
DGO-01	Rock Creek	Dissolved Oxygen	Aquatic Life	Source Unknown
DCD	La Harpe	Dissolved Oxygen	Aquatic Life	Source Unknown
DGP	Creek	Manganese	Aquatic Life	Source Unknown
DCD 01	La Harpe	Dissolved Oxygen	Aquatic Life	Source Unknown
DGP-01	Creek	Manganese	Aquatic Life	Source Unknown
DGPC-01	Baptist Creek	Manganese	Aquatic Life	Source Unknown
		Dissolved Oxygen	Aquatic Life	Municipal point source discharges
DGZN-01	Prairie Creek	Phosphorus (Total)	Aquatic Life	Crop Production (crop land or dry land), Municipal point source discharges
		Total Suspended Solids (TSS)	Aquatic Life	Crop Production (crop land or dry land)
		Ammonia (Total)	Aquatic Life	Municipal point source discharges
DGZR	South Branch La	Dissolved Oxygen	Aquatic Life	Municipal point source discharges
DGZK	Moine River	Manganese	Aquatic Life	Source Unknown
		Phosphorus (Total)	Aquatic Life	Municipal point source discharges
		Phosphorus (Total)	Aesthetic Quality	Agriculture, Internal nutrient recycling, Crop Production (crop land or dry land), Golf Courses, Other recreational pollution sources, Runoff from Forest/Grassland/Parkland
RLE Carthage Lake		Total Suspended Solids (TSS)	Aesthetic Quality	Crop Production (crop land or dry land), Impacts from hydrostructure flow regulation/modification, Littoral/shore area modifications (non-riverine), Other recreational pollution sources, Runoff from Forest/Grassland/Parkland, Site clearance (land development or redevelopment)

Table 4-4 Impaired Water Bodies

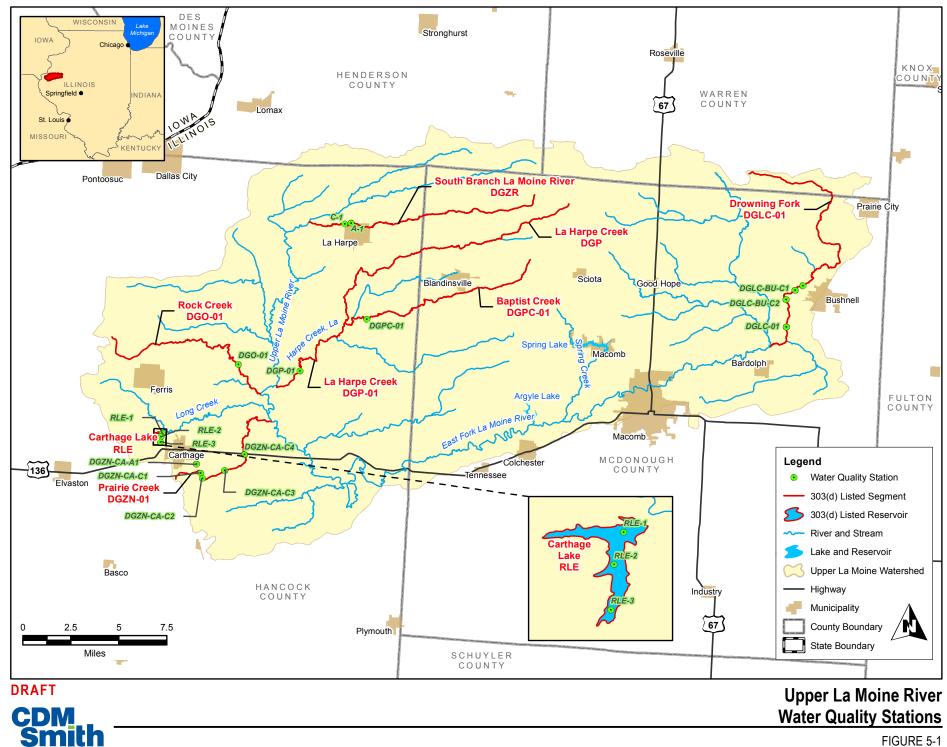
Bold Causes of Impairment have numeric water quality standards and TMDLs will be developed. Italicized Causes of Impairment do not have numeric water quality standards and an LRS will be developed where water quality targets have been provided by Illinois EPA.

Section 5

Upper La Moine River Watershed Characterization

In order to further characterize the Upper La Moine River watershed, a wide range of pertinent data were collected and reviewed. Water quality data for streams and lakes, as well as information on potential point and nonpoint sources within the watershed, were compiled from a variety of data sources. This information is presented and discussed in further detail in the remainder of this section.

5.1 Water Quality Data


Data from historical water quality stations within the Upper La Moine River watershed were located and reviewed for this report **Figure 5-1**. These water quality data were primarily provided by the Illinois EPA. Stations RLE-01, RLE-02 and RLE-03 on Carthage Lake are part of the Illinois EPA Ambient Lakes Program and were sampled four times a year in 2003, 2009 and 2012. Stations on the impaired stream segments are part of Illinois EPA's Intensive Basin Survey Program in which stations are monitored every 5 years (2002, 2007, and 2012). In addition, Facility Related Stream Surveys were conducted in the 1980s on the South Branch La Moine River (DGZR) and Prairie Creek (DGZN-01). Data from these surveys were also reviewed for this report.

The impaired water body segments in the Upper La Moine River watershed were presented in Section 1. Refer to **Table 1-1** for impairment information specific to each segment. Recent and historical data are included in this section and document historical trends and observations. The following section addresses both stream and lake impairments. Data are summarized by impairment and discussed in relation to the relevant Illinois water quality standard. Data summaries provided in this section include all available date ranges of collected data. The following sections will first discuss data for the impaired stream segments in the Upper La Moine River watershed followed by data for the impaired lake in the watershed.

5.1.1 Stream Water Quality Data

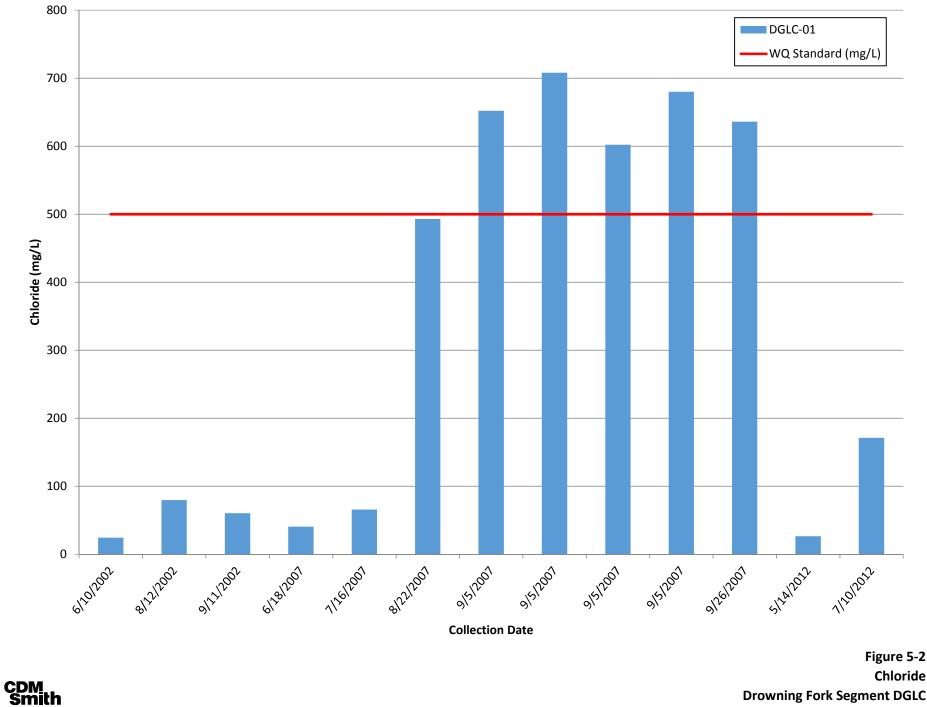
Seven impaired stream segments exist within the Upper La Moine River watershed (Drowning Fork segment DGLC-01, Rock Creek segment DGO-01, La Harpe Creek segments DGP and DGP-01, Baptist Creek segment DGPC-01, Prairie Creek segment DGZN-01 and South Branch La Moine River segment DGZR). Data presented below relate to the parameters of concern that currently have numeric criteria as well as those with water quality targets designed to address narrative standards. As presented in Section 4.3, chloride, dissolved oxygen, manganese and ammonia have numeric criteria and impairment determinations can be confirmed through comparison of available historical data. Although sedimentation/siltation, TSS, and total phosphorus do not have numeric criteria for streams, the parameters have watershed-specific LRS target values that were presented in Section 4.4. These values were used to confirm impairment listings in the following sections. Historical water quality data for the impaired segments of the Upper La Moine River watershed are available in Appendix C.

5.1.1.1 Chloride

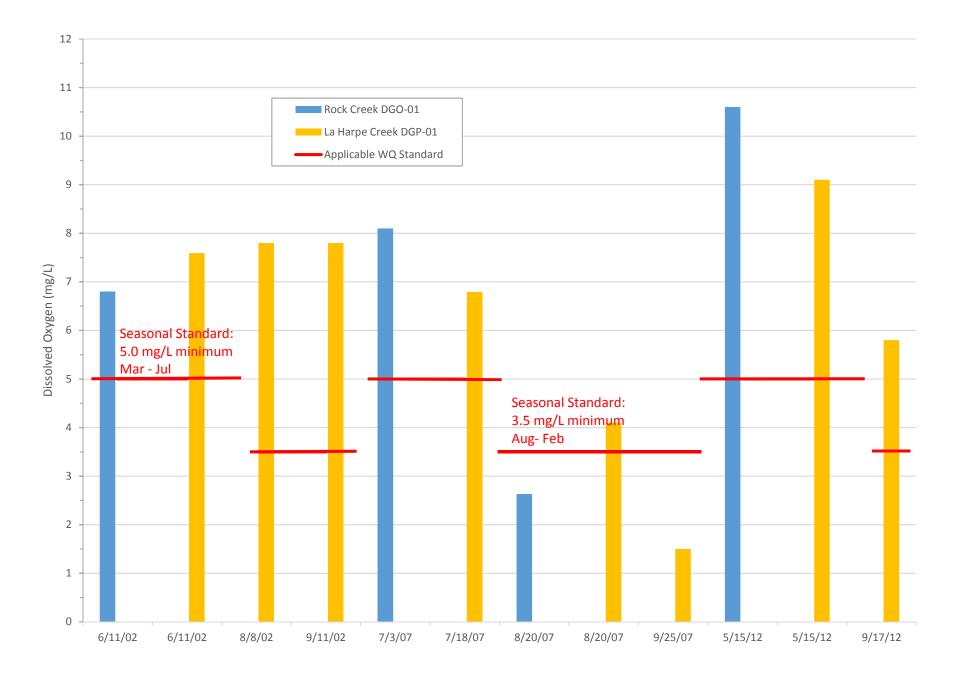
Drowning Fork segment DGLC-01 is listed for impairment of aquatic life use caused by elevated chloride concentrations. **Table 5-1** summarizes available historical chloride data for this segment. The current general use water quality standard for total chloride is 500 mg/L. The data summary presented in **Table 5-1** reflects chloride data from water quality stations DGLC-01, DGLC-BU-C1, and DGLC-BU-C2 located on segment DGLC-01 of the Drowning Fork. The combined dataset for segment DGLC-01 consists of 13 samples collected in 2002, 2007, and 2012. Five samples collected during this time period exceeded the currently applicable standard **Figure 5-2**. Data collected in 2007 at these sites were above the standard.

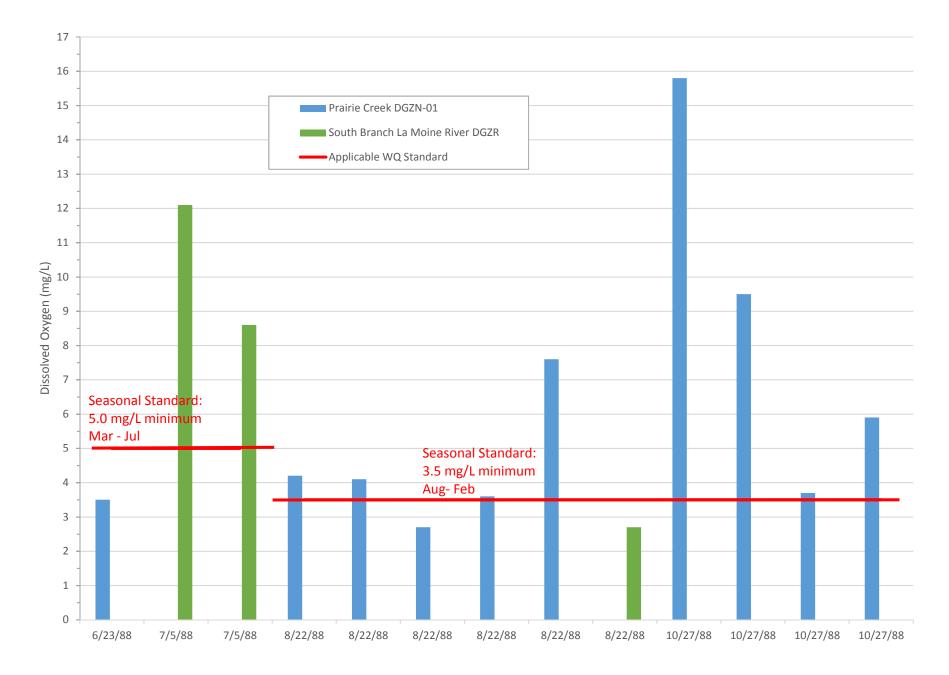
Stream Segment ID	Period of Record and Number of Data Points	Mean (mg/L)	Maximum (mg/L)	Minimum (mg/L)	Number of Exceedances
Drowning Fork Segment DGLC-01	2002-2012; 13	326	708	24	5

Table 5-1 Existing	Chloride Da	ta for Drowning	Fork Segment	DGLC-01

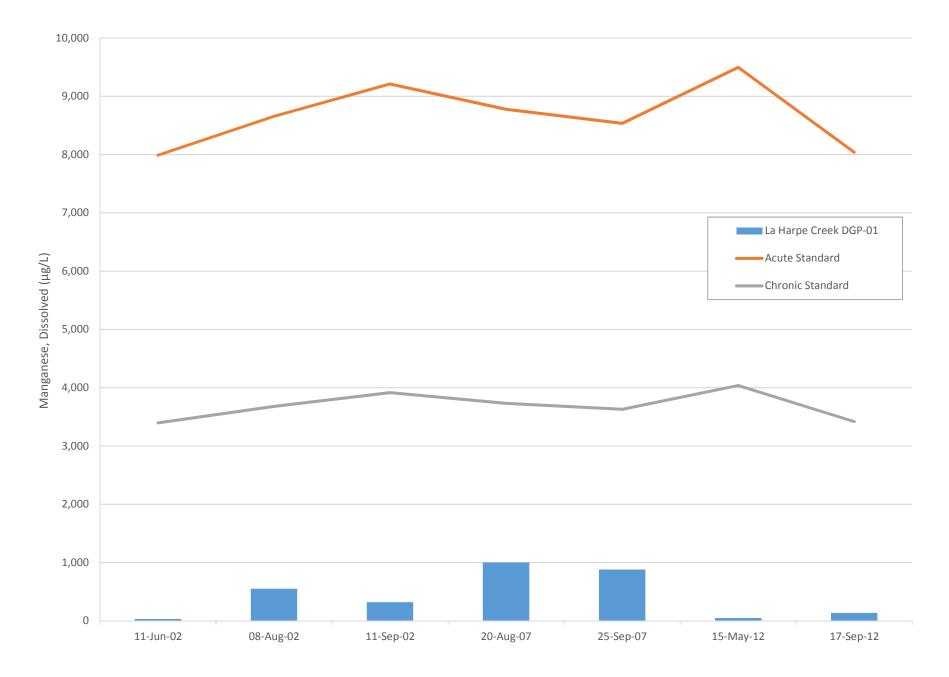

5.1.1.2 Dissolved Oxygen

Rock Creek segment DGO-01, La Harpe Creek segments DGP and DGP-01, Prairie Creek segment DGZN-01, and South Branch La Moine River segment DGZR are listed for impairment of aquatic life use caused by low dissolved oxygen concentrations. Table 5-2, along with Figures 5-3 and 5-4, summarize available historical dissolved oxygen data on these segments. The general use water quality standard for dissolved oxygen provides seasonal instantaneous minimum and minimum weekly (7-day) average concentrations for dissolved oxygen in streams. Due to the limited dataset, only the instantaneous minimum standards of 5.0 mg/L for March through July and 3.5 mg/L for August through February were used to identify exceedances of the standard in this section of the report. The available datasets were not assessed for impairment of the weekly (7-day) minimum DO limits; however, future data analysis may take the weekly standards into account. The data presented in **Table 5-2** reflect single measurements from each segment compared to the applicable seasonal standard at the time of the field measurement. The extremely limited datasets for DO in impaired segments DGZN-01 and DGZR, and the absence of any DO data for segment DGP of La Harpe Creek, do not allow for assessment of these segments' current compliance with DO standards. Additional data collection is needed to confirm that impairment exists.


Impaired Stream Segment Name & ID	Period of Record and Number of Data Points	Mean (mg/L)	Maximum (mg/L)	Minimum (mg/L)	Number of Exceedances		
Rock Creek DGO-01	2002,2007,2012;4	7.0	10.6	2.6	1		
La Harpe Creek DGP		No data					
La Harpe Creek DGP- 01	2002,2007,2012;8	6.3	9.1	1.5	1		
Prairie Creek DGZN-01	1988;13	6.4	15.8	2.7	2		
South Branch La Moine River DGZR	1988;3	7.8	12.1	2.7	1		


Table 5-2 Dissolved Oxygen D	ta for Impaired Stream Segments
------------------------------	---------------------------------

Drowning Fork Segment DGLC



5.1.1.3 Manganese

La Harpe Creek segment DGP-01, Baptist Creek segment DGPC-01 and South Branch La Moine River segment DGZR are listed for impairment of aquatic life use caused by elevated dissolved manganese concentrations. **Table 5-3** summarizes available historical dissolved manganese data for these segments. Both the acute and chronic general use water quality standards for dissolved manganese are calculated standards that vary with the total hardness of the sampled water.

Dissolved manganese data are not available for La Harpe Creek segment DGP or for South Branch La Moine River segment DGZR and no exceedances of the acute or chronic water quality standards for dissolved manganese were reported in any of the available data from La Harpe Creek segment DGP-01 or Baptist Creek segment DGPC-01 **Figures 5-5** and **5-6**. The lack of available data and lack of reported exceedances where data exists, suggests that these segments were assessed as impaired due to elevated manganese concentrations based on a previous water quality standard for manganese. Prior to 2012, the applicable water quality standard for manganese to protect aquatic life uses in Illinois was 1.0 mg/L of total manganese. This standard has since been replaced by the current hardness-dependent standards developed for the dissolved fraction of manganese in water. Additional data collection is necessary to assess segments DGP and DGZR for impairment caused by manganese. The lack of reported exceedances for segments DGP-01 and DGPC-01 suggests that removal of these impairments from the Illinois 303(d) list may be warranted.

Impaired Stream Segment Name & ID	Period of Record and Number of Data Points	Mean (µg/L)	Maximum (µg/L)	Minimum (µg/L)	Number of Acute Exceedances	Number of Chronic Exceedances
La Harpe Creek DGP	No Data					
La Harpe Creek DGP-01	2002-2012; 7	423	1,000	30	0	0
Baptist Creek DGPC-01	2007; 3	724	1,400	61	0	0
South Branch La Moine River DGZR	No Data					

CDM Smith Figure 5-5 Dissolved Manganese La Harpe Creek Segment DGP-01

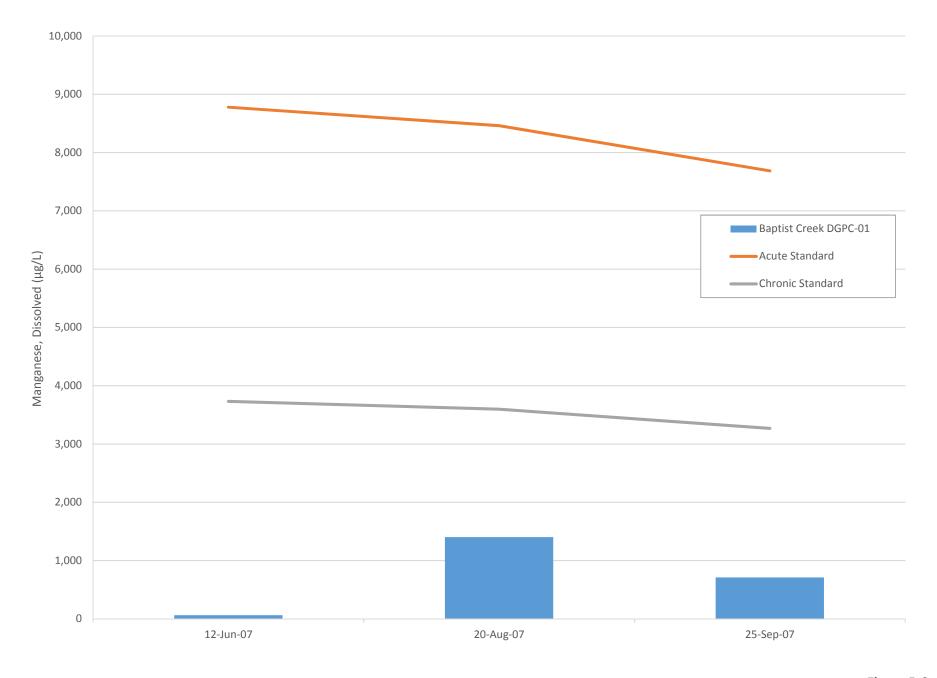
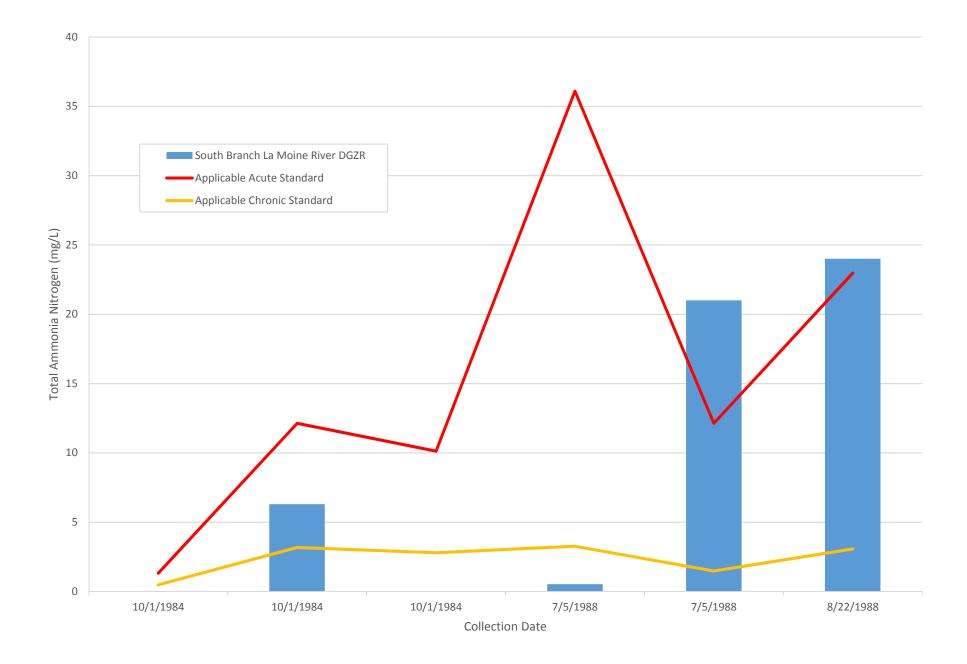


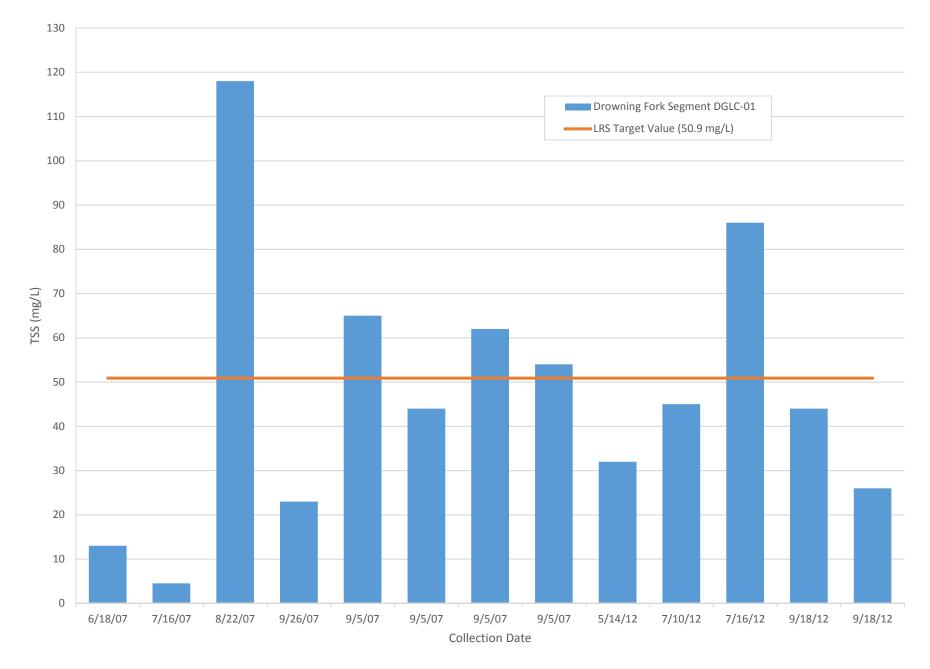
Figure 5-6 Dissolved Manganese Baptist Creek Segment DGPC-01

5.1.1.4 Ammonia

South Branch La Moine River segment DGZR is listed for impairment of aquatic life use caused by elevated total ammonia nitrogen concentrations. **Table 5-4** summarizes available historical total ammonia nitrogen data on this segment. Single-sample exceedances of both the calculated acute and chronic standards, as well as the 15 mg/L maximum standard were reported in this segment **Figure 5-7**. However, the available dataset is limited to six total samples, three samples collected on October 1, 1984 and three collected on July 5, 1988. Additional data collection is necessary to assess current impairment.

Impaired Stream Segment Name & ID	Period of		Maximum (mg/L) (mg/L)	Exceedances			
	Record and Mean Number of (mg/L) Data Points	um		Acute	Chronic	Max (15 mg/L)	
South Branch La Moine River DGZR	1984, 1988;5	10.4	24	<0.1	2	3	2


Table 5 4 Total Ammonia as	Nitrogon Data f	or South Branch La	Maina Pivar Sagmant DC7P
Table 5-4 Total Ammonia as	s Nitrogen Data id	or South Branch La	Moine River Segment DGZR


5.1.1.5 Total Suspended Solids

Drowning Fork segment DGLC-01 and Prairie Creek segment DGZN-01 are listed for impairment of aquatic life use caused by elevated TSS concentrations. **Table 5-5** summarizes available historical suspended sediment data for this segment. Note that there are multiple water quality stations located in the Drowning Fork segment DGLC-01 and Prairie Creek segment DGZN-01; as shown in **Figure 5-1**. The watershed-specific water quality target for TSS in streams is a maximum value of 50.9 mg/L. **Figure 5-8** shows the TSS data collected over time on Drowning Fork Segment DLGC-01 and **Figure 5-9** shows TSS data over time for Prairie Creek segment DGZN-01. Note that when multiple results are shown for a single date, the results are shown from upstream to downstream sites within the segment. Historical TSS concentrations have exceeded the watershed-specific target on both impaired segments, however, data from Prairie Creek are only available from 1988. It is recommended that more recent data be collected on Prairie Creek to confirm that impairment still exists.

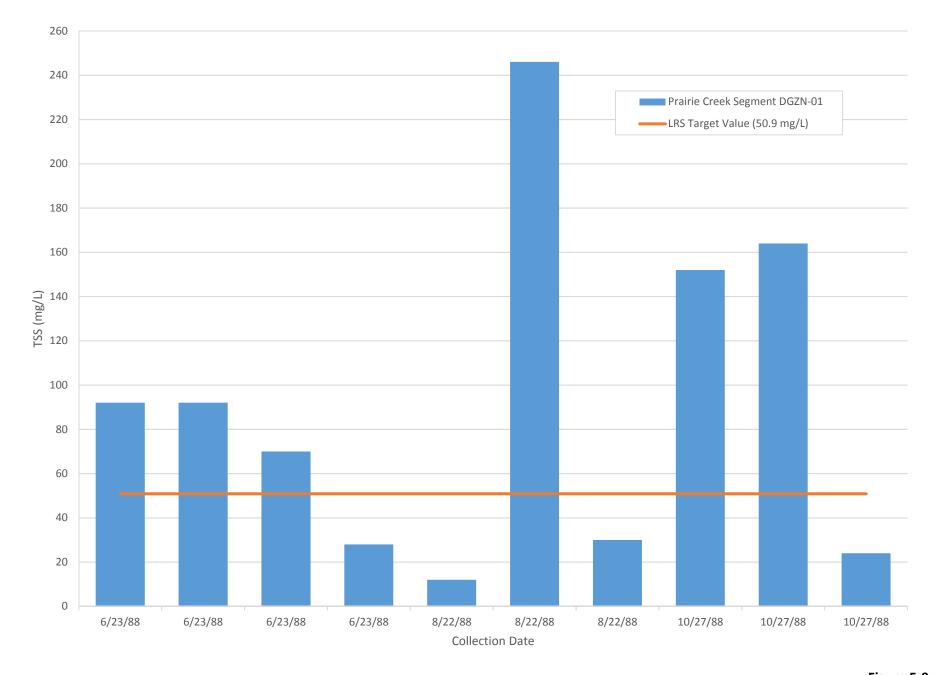

Impaired Stream Segment Name & ID	Period of Record and Number of Data Points	Mean (mg/L)	Maximum (mg/L)	Minimum (mg/L)	Number of Exceedances
Drowning Fork segment DGLC-01	2007,2012;13	47.4	118	4.5	5
Prairie Creek segment DGZN-01	1988;10	91	246	12	6

Table 5-5 Total Suspended Solids Data for Impaired Stream Segments

CDM Smith

CDM Smith

5.1.1.6 Total Phosphorus

Drowning Fork segment DGLC, Prairie Creek segment DGZN, and South Branch La Moine River segment DGZR are listed for impairment of the aquatic life use due to elevated total phosphorus concentrations. **Table 5-6** summarizes historical phosphorus data collected on the impaired segments. The watershed-specific water quality target for total phosphorus in streams is a maximum value of 0.17 mg/l. **Figure 5-10** shows that concentrations in Drowning Fork regularly exceed the water quality target and are typically highest in mid to late summer. **Figure 5-11** shows that in the late 1980s, total phosphorus concentrations on Prairie Creek and South Branch La Moine River regularly far exceeded the water quality target. Due to a lack of recently collected data, it is unknown if total phosphorus concentrations on these two segments still exceed the target value.

Impaired Stream Segment Name & ID	Period of Record and Number of Data Points	Mean (mg/L)	Maximum (mg/L)	Minimum (mg/L)	Number of Exceedances
Drowning Fork segment DGLC-01	2002-2012;13	0.73	1.78	0.13	10
Prairie Creek segment DGZN-01	1988;10	3.71	6.90	0.98	10
South Branch La Moine River segment DGZR	1984,1988;5	1.82	5.00	0.06	3

Table 5-6 Total Phosphorus Data for Impaired Stream Segments

5.1.1.7 Sedimentation/Siltation

Drowning Fork segment DGLC-01 is listed for impairment of the aquatic life use by sedimentation and siltation. Streams have historically been listed for impairment caused by sedimentation/siltation when over 34 percent siltation was observed (prior to 2006), or over 75 percent siltation was observed (2008 to 2010). Illinois EPA now addresses sedimentation and siltation impairments through assessment of NVSS concentrations. Illinois EPA has developed a watershed-specific LRS target value for NVSS concentrations in streams of the Upper La Moine River watershed of 39.1 mg/L of NVSS.

NVSS concentrations are calculated as the difference of total suspended solids (TSS) and total volatile solids (TVS) in a single sample. Only paired TSS and TVS results from the same sampling event and location were used to calculate NVSS concentrations. The available NVSS data for this segment is presented in **Table 5-7** and shown on **Figure 5-12**. Three of the historical samples have exceeded the target value.

Impaired Stream Segment Name & ID	Period of Record and Number of Data Points	Mean (mg/L)	Maximum (mg/L)	Minimum (mg/L)	Number of Exceedances
Drowning Fork segment DGLC-01	2002-2012; 14	30.6	92	3	3

Table 5-7 NVSS Data for Impaired Stream Segments

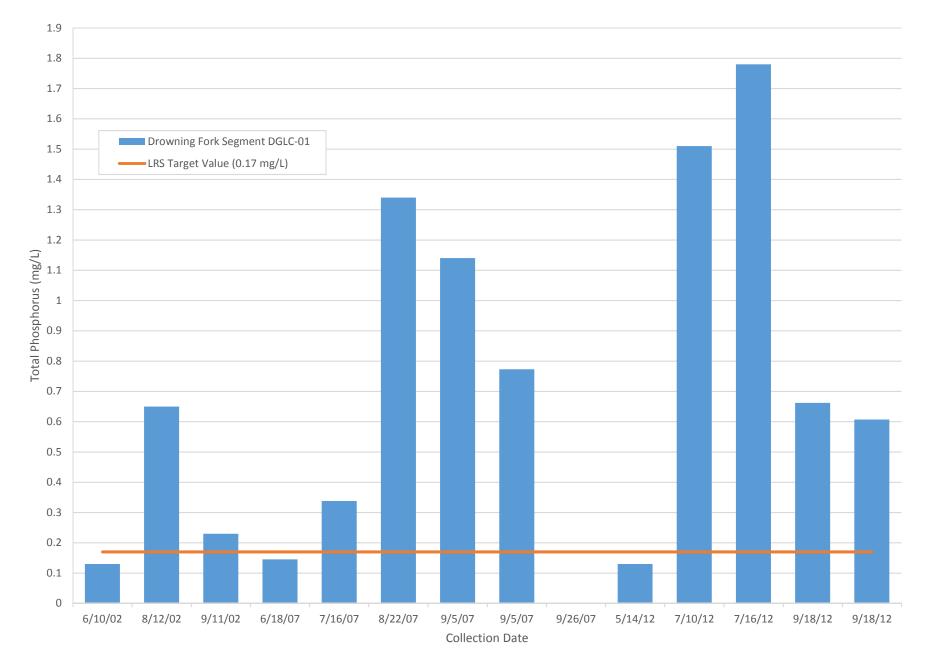
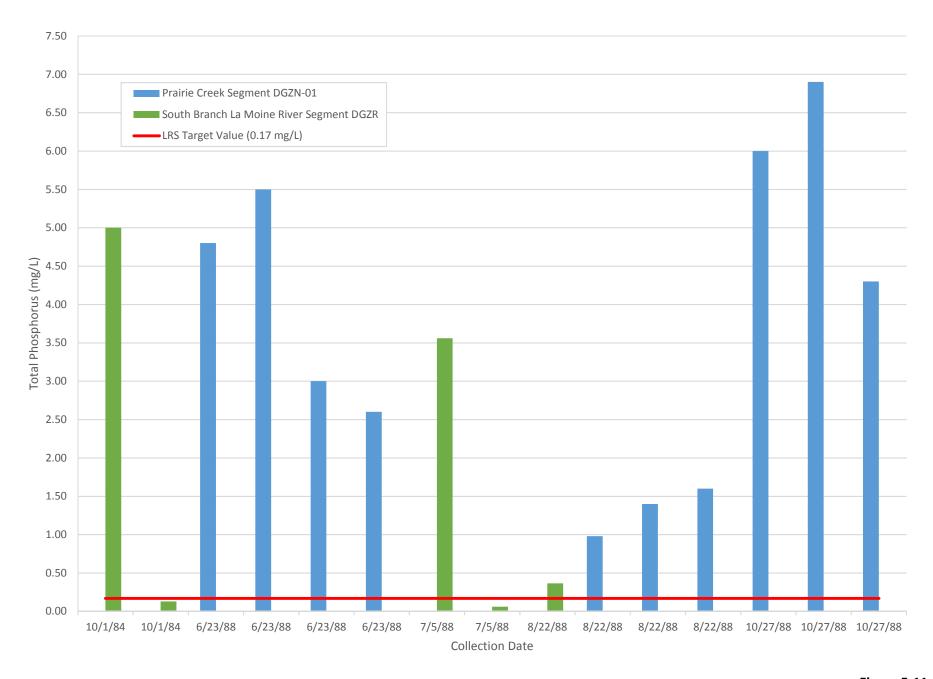
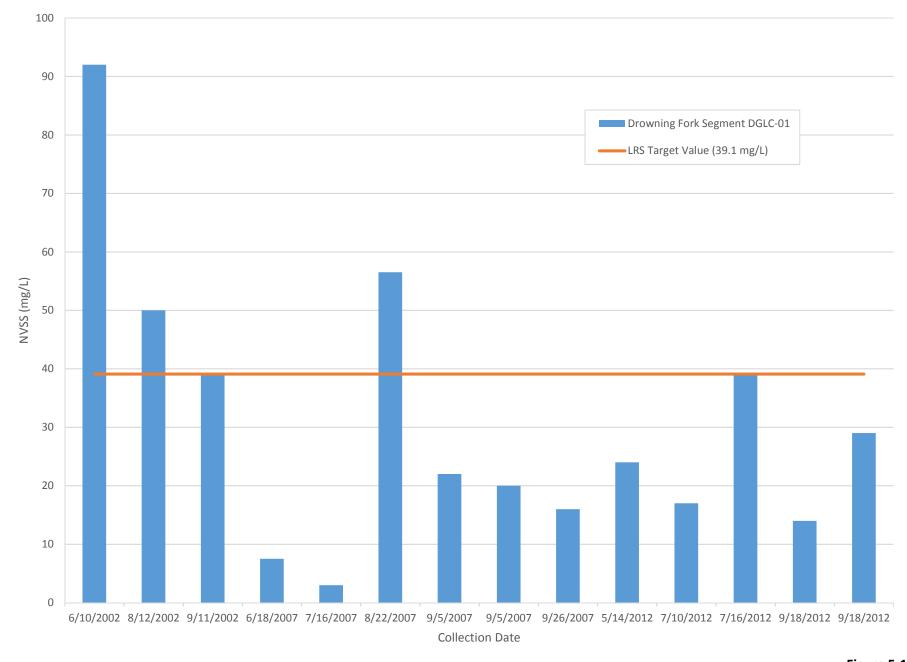




Figure 5-10 Total Phosphorus Drowning Fork Segment DGLC-01

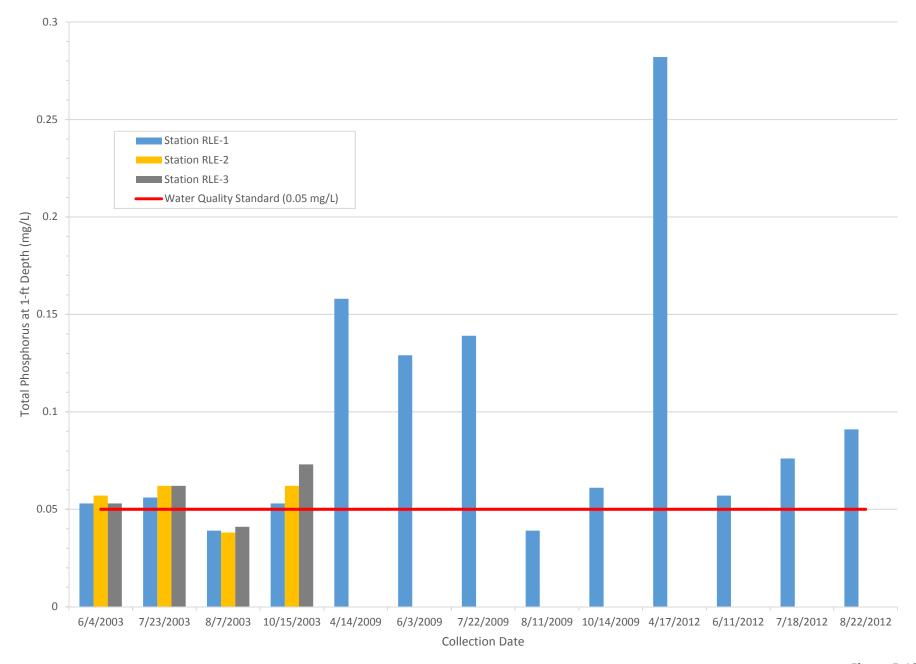
CDM Smith Figure 5-12 Non-Volatile Suspended Solids (NVSS) Drowning Fork Segment DGLC-01

5.1.2 Carthage Lake Water Quality Data

Carthage Lake is listed for impairment of aesthetic quality use caused by elevated total phosphorus and total suspended solids concentrations. Data are available from three separate water quality monitoring locations within Carthage Lake. An inventory of all available data associated with the impairments in Carthage Lake is presented in **Table 5-8**.

Carthage Lake Segment RLE; Sample locations RLE-01, RLE-02, RLE-03					
RLE-01	Period of Record	Number of Samples			
Phosphorus, Total	2003,2009,2012	13			
Phosphorus, Dissolved	2003,2009,2012	13			
Phosphorus in Bottom Deposits	2003,2009	2			
Total Suspended Solids	2012	4			
RLE-02					
Phosphorus, Total	2003	4			
Phosphorus, Dissolved	2003	4			
Phosphorus in Bottom Deposits	-	-			
Total Suspended Solids	2003	5			
RLE-03					
Phosphorus, Total	2003	4			
Phosphorus, Dissolved	2003	4			
Phosphorus in Bottom Deposits	-	-			
Total Suspended Solids	2003	5			

Table 5-8 Data Inventory for Impairment at Carthage Lake


5.1.2.1 Total Phosphorus in Carthage Lake

The applicable water quality standard for total phosphorus in Carthage Lake is 0.05 mg/L. Compliance with the total phosphorus standard is assessed using samples collected at a 1-foot depth from the lake surface. The number of samples, a count of exceedances, and the average total phosphorus concentrations at a 1-foot depth for each year of available data at each monitoring location in Carthage Lake are presented in **Table 5-**9 and shown on **Figure 5-13**. Based on the limited available dataset, total phosphorus concentrations collected at a 1-foot depth in Carthage Lake are consistently above the 0.05 mg/L water quality standard. Annual average phosphorus concentrations at sampling station RLE-01 increased from 2003 to 2012. Phosphorus data from sampling stations RLE-02 and RLE-03 are only available for year 2003, therefore no trend information can be documented.

Station ID	Period of Record and Number of Data Points	Mean (mg/L)	Maximum (mg/L)	Minimum (mg/L)	Number of Exceedances
RLE-1	2003-2012; 13	0.095	0.282	0.039	11
RLE-2	2003; 4	0.055	0.062	0.038	3
RLE-3	2003; 4	0.057	0.073	0.041	3

Table 5-9 Total Phosphorus at 1-ft Depth in Carthage Lake (RLE)

CDM Smith

5.1.2.2 Total Suspended Solids in Carthage Lake

The LRS target value for TSS in the Upper La Moine River watershed is 50.9 mg/L. TSS data in Carthage Lake are available for samples collected at various depths from 2003-2012 at RLE-1 and from 2003 at RLE-2 and RLE-3. Exceedances of the LRS target value have been recorded 4 times at station RLE-1, most recently in 2012 (**Figure 5-14**). It should be noted that the samples collected above the 50.9 mg/L threshold were collected near the lake bottom in 2003 and 2009 and at a depth of 9 feet in 2009. The number of exceedances and average TSS concentrations for each year of available data at each monitoring site in Carthage Lake are presented in **Table 5-10**.

Station ID	Period of Record and Number of Data Points	Mean (mg/L)	Maximum (mg/L)	Minimum (mg/L)	Number of Exceedances
RLE-1	2003-2012; 42	24	161	4	4
RLE-2	2003; 5	12	19	6	0
RLE-3	2003; 5	16	19	11	0

Table 5-10 Total Suspended Solids Data for Carthage Lake (RLE)

5.2 Lake Characteristics

5.2.1 Carthage Lake

Carthage Lake is located within Hancock County, approximately 0.5 miles northwest of the City of Carthage, Illinois. Carthage Lake is fed by a tributary of Long Creek and has historically provided drinking water to the City of Carthage. It should be noted that Carthage is currently constructing a deep well and a reverse osmosis treatment plant to replace its intake source from the lake. Stakeholders indicated that the lake has been an unreliable source of drinking water during periods of drought.

Carthage Lake has a surface area of 40 acres and a reported maximum depth of 19 feet. The overland watershed draining into Carthage Lake is approximately 1,900 acres. The lake is located in a park setting and is adjacent to a golf course. The areas immediately adjacent to the lake are primarily grass and forest land. Further to the east of the lake there is low and medium density development, while additional surrounding areas are primarily farmland. In addition to historically serving as a public water source, the lake is utilized for boating and fishing.

5.3 Point Sources

There are 19 permitted point sources (11 individual permits and 8 general permits) within the Upper La Moine River watershed. **Table 5-11** contains permit information for each discharger while **Figure 5-15** shows the locations of each facility. Note that not all facilities within the watershed discharge upstream of impaired segments. In general, facilities discharging treated domestic wastewater have the potential to affect dissolved oxygen concentrations (through the discharge of nutrients and other oxygen-demanding materials) and nutrient levels in their receiving waters. Potential pollutants discharged from industrial facilities vary by industry and may or may not contain metals and/or sediments, but industry is typically less likely to impact dissolved oxygen and nutrient concentrations. National Pollutant Discharge Elimination System (NPDES) facilities with permit limits are required to submit discharge monitoring reports (DMRs) to Illinois EPA. Stage 3 will include a summary of relevant DMR data from discharges with the potential to impact impaired streams.

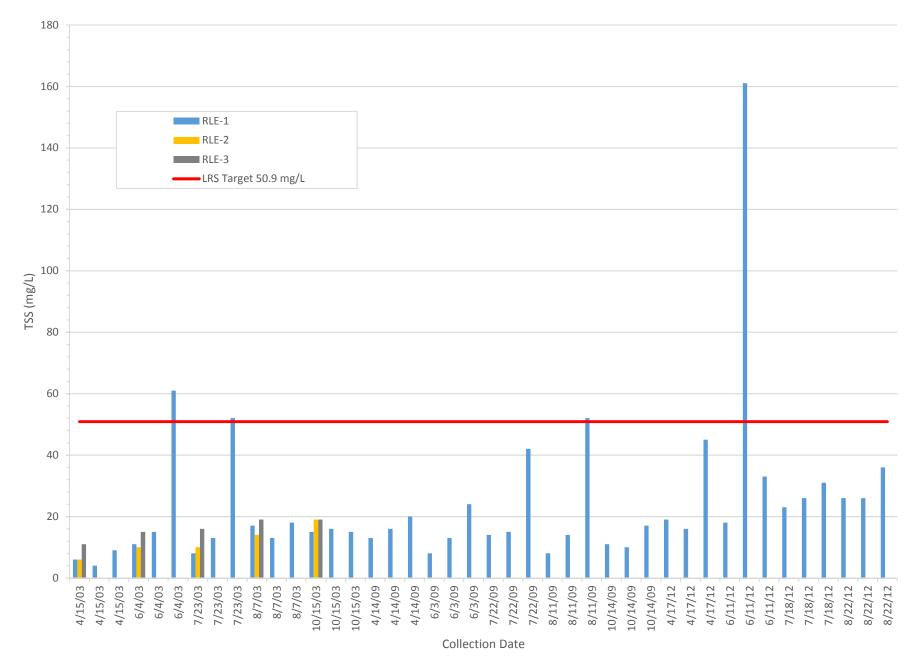


Figure 5-14 TSS Carthage Lake (RLE)

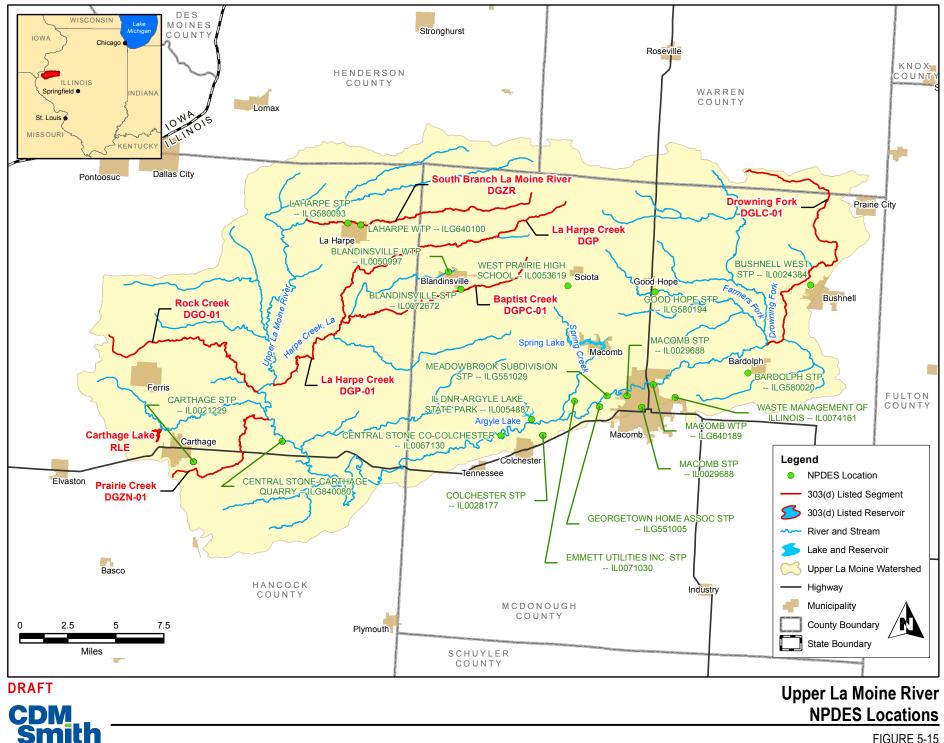


FIGURE 5-15

Facility ID	Facility Name	Design Average/ Maximum Flow (mgd)	Receiving Water
ILG840080	Central Stone Carthage Quarry	ND	La Moine River
IL0021229	Carthage STP	0.5/5	Prairie Creek
IL0067130	Central Stone CO- Colchester	ND	East Fork of La Moine River
IL0054887	IL DNR- Argyle Lake State Park	0.00155/0.0048	Unnamed ditch, tributary to Argyle Lake
IL0028177	Colchester STP	0.17/0.47	Unnamed tributary of east fork of the La Moine River
IL0071030	Stratford West Apartments (previously Emmett Utilities INC). STP	0.0045/0.005265	Unnamed tributary of east fork of the La Moine River
ILG551005	Georgetown Home Assoc STP	0.15 ¹	LaMoine River
ILG551029	Meadowbrook Subdivision	0.0188 ¹	East fork of LaMoine River
IL0029688	Macomb STP	3.0/7.5	Kiljordan Creek
ILG640189	Macomb WTP	ND	East branch of La Moine River
IL0074161	Waste Management of Illinois	ND	Unnamed tributary of East Fork La Moine River
ILG580020	Bardolph STP	0.175 ¹	La Moine River
IL0024384	Bushnell West STP	0.25/0.625	Drowning Fork Creek
ILG580194	Good Hope STP	0.075 ¹	Town Fork
IL0053619	West Prairie High School	0.002/0.005	Unnamed tributary of Spring Creek
IL0072672	Blandinsville STP	0.093/0.2325	Unnamed tributary to Baptist Creek
IL0050997	Blandinsville WTP	ND	Little Creek
ILG640100	La Harpe WTP	ND	South Branch of La Moine River
ILG580093	La Harpe STP	0.613 ¹	South Branch of La Moine River

 Table 5-11 Permitted Facilities Discharging within the Upper La Moine River Watershed

ND = No Data ¹ = single flow values represent average reported flows

5.4 Nonpoint Sources

There are many potential nonpoint sources of pollutant loading to the impaired segments in the Upper La Moine River watershed. This section will discuss site-specific cropping practices, animal operations, and area septic systems. Available data were collected through communications with the local NRCS, Illinois Soil and Water Conservation Districts (SWCDs), and public health departments.

5.4.1 Crop Information

Approximately 66 percent of the land within the Upper La Moine River watershed is devoted to agriculture. Because much of the watershed is under cultivation, soil loss from fields is likely the primary source of sediment and any pollutant attached to the sediment (nutrients and potentially naturally occurring metals). Tillage practices for crops such as corn, soybeans, and grains can be categorized as conventional till, reduced till, mulch till, and no till. The percentage of each tillage practice for corn, soybeans, and small grains by county are generated from County Transect Surveys by the Illinois Department of Agriculture (IDA) (IDA, 2015). Data from the 2004 and 2015 survey are presented in **Tables 5-12** through **5-15** for Hancock, McDonough, Henderson and Warren Counties, respectively.

According to the County Transect Survey summary report, fields planted conventionally leave less than 15% of the soil surfaced covered with crop residue after planting while mulch-till leaves at least 30% of the residue from the previous crop remaining on the soil surface after

being tilled and planted. Reduced-till falls between conventional and mulch (greater than 15% but less than 30%) and no-till practices leave the soil virtually undisturbed from harvest through planting. Residue is important because it shields the ground from the eroding effects of rain and helps retain moisture for crops. Data indicates a transition towards mulch tilling in most counties over the past decade with reductions in conventional till practices.

Tillage System	Corn		Soybean		Small Grain	
	2004	2015	2004	2015	2004	2015
Conventional	62%	57%	14%	5%	0%	0%
Reduced - Till	22%	30%	15%	31%	0%	0%
Mulch – Till	5%	12%	14%	39%	0%	67%
No - Till	11%	1%	56%	25%	100%	33%

Table 5-12 Tillage Practices in	Hancock County, Illinois
---------------------------------	--------------------------

Table 5-13 Tillage Practices in McDonough County, Illinois

Tillage System	Corn		Soybean		Small Grain	
	2004	2015	2004	2015	2004	2015
Conventional	43%	24%	9%	10%	0%	67%
Reduced - Till	29%	22%	22%	8%	100%	0%
Mulch – Till	16%	40%	37%	48%	0%	0%
No - Till	12%	14%	31%	34%	0%	33%

Table 5-14 Tillage Practices in Henderson County, Illinois

Tillage System	Corn		Soybean		Small Grain	
	2004	2015	2004	2015	2004	2015
Conventional	7%	11%	0%	3%	33%	100%
Reduced - Till	44%	30%	15%	5%	67%	0%
Mulch – Till	34%	43%	25%	46%	0%	0%
No - Till	15%	16%	60%	46%	0%	0%

Table 5-15 Tillage Practices in Warren County, Illinois

Tillage System	Corn		Soybean		Small Grain	
	2004	2015	2004	2015	2004	2015
Conventional	6%	3%	0%	0%	0%	100%
Reduced - Till	37%	25%	5%	1%	0%	0%
Mulch – Till	30%	34%	29%	25%	0%	0%
No - Till	27%	38%	66%	74%	100%	0%

Information on field tiling practices was also sought as field drains can influence the timing and amounts of water delivered to area streams and reservoirs as well as deliver dissolved nutrients from fields to receiving waters. Local NRCS offices reported that they currently do not keep records on which farms use tile drainage. The NRCS office in McDonough County said the use of drain tile is common but they did not have exact numbers, and that tile drainage tends to be more common north of Macomb, due to flatter elevations in that portion of the watershed.

5.4.2 Animal Operations

Information on commercial animal operations is available from the NASS. Knowing the number of animal units in a watershed is useful in TMDL development as grazing animals have the potential to increase erosion and contribute nutrients through manure. Although watershed-specific data are not available, countywide data for Hancock, McDonough, Henderson and Warren Counties are presented in **Tables 5-16** through **5-19**, respectively. Data from 2007 and 2012 have been published on the USDA website.

Livestock Type	2007	2012	Percent Change
Cattle and Calves	25,491	23,264	-9%
Beef	ND	9,953	-
Dairy	ND	13	-
Hogs and Pigs	166,252	186,678	12%
Poultry ⁽¹⁾	1,733	1,321	-24%
Sheep and Lambs	252	471	87%
Horses and Ponies	644	573	-11%

Table 5-16 Hancock County Animal Population (2007 and 2012 Census of Agriculture)

⁽¹⁾ Poultry census data inclusive of broilers, layers, pullets, roosters and turkeys ND= No data

Table 5-17 McDonough County	Animal Population (2007	and 2012 Census of Agriculture)
Tuble 5 17 Meboliough county		and LOIL Consus of Agriculture

Livestock Type	2007	2012	Percent Change
Cattle and Calves	17,545	13,312	-24%
Beef	ND	6,834	-
Dairy	ND	30	-
Hogs and Pigs	10,198	42,680	319%
Poultry ⁽¹⁾	613	954	56%
Sheep and Lambs	1,020	1,038	2%
Horses and Ponies	647	496	-23%

 $^{(1)}$ Poultry census data inclusive of broilers, layers, pullets, roosters and turkeys ND= No data

Livestock Type	2007	2012	Percent Change
Cattle and Calves	14,284	15,558	9%
Beef	ND	ND	-
Dairy	ND	ND	-
Hogs and Pigs	23,100	20,018	-13%
Poultry ⁽¹⁾	193	224	16%
Sheep and Lambs	761	509	-33%
Horses and Ponies	347	285	-18%

⁽¹⁾ Poultry census data inclusive of broilers, layers, pullets, roosters and turkeys ND= No data

Livestock Type	2007	2012	Percent Change
Cattle and Calves	16,751	15,520	-7%
Beef	8,589	5,079	-41%
Dairy	275	235	-15%
Hogs and Pigs	73,036	67,665	-7%
Poultry ⁽¹⁾	595	1,400	135%
Sheep and Lambs	3,539	3,566	1%
Horses and Ponies	426	330	-23%

Table 5-19 Warren County Animal Populatior	(2007 and 2012 Census of Agriculture)
--	---------------------------------------

⁽¹⁾ Poultry census data inclusive of broilers, layers, pullets, roosters and turkeys

The tables above show significant cattle, hog and pig populations within the watershed counties. There are no known concentrated animal feeding operations (CAFOs) within the watershed. Communications with local NRCS officials have provided limited additional watershed-specific details although stakeholders indicated that animal populations and manure spreading may be a growing issue throughout the watershed.

5.4.3 Septic Systems

Most households in rural areas of Illinois that are not connected to municipal sewers make use of onsite sewage disposal systems, or septic systems. There are several types of septic systems, but the most common septic system is composed of a septic tank draining to a septic field, where nutrient removal occurs. However, the degree of nutrient removal is limited by local soils and the extent of system upkeep and maintenance. Across the U.S., septic systems have been found to be a significant source of phosphorus pollution.

Information on the extent of sewered and non-sewered municipalities in the Upper La Moine River watershed was obtained from the county health departments. Health department officials in Hancock County, stated that the town of Carthage is served by sewer, but most county residents within the watershed rely on private septic systems. Additionally, health department officials in McDonough County reported that residents within Macomb city limits are served by sewer and most residents in the county rely on private systems or wildcat sewer/collection systems that discharge untreated or partially treated wastewater to the surface of the ground, such as ditches or yards.

5.4.4 Internal Phosphorus Loading in Lakes

An additional potential nonpoint source of pollutants for Carthage Lake is lake sediments. Nutrients can be bound to soils and as soils erode throughout the drainage area, they accumulate at the bottom of receiving lakes. Internal phosphorus loading can occur when the water above the sediments becomes anoxic causing the release of phosphorus from the sediment in a form which is available for plant uptake. The addition of bioavailable phosphorus in the water column stimulates more plant growth and die-off, which may perpetuate or create anoxic conditions and enhance the subsequent release of phosphorus into the water. Internal phosphorus loading can also occur in shallow lakes through release from sediments by the physical mixing and reintroduction of sediments into the water column as a result of wave action, winds, boating activity, and other means.

5.5 Watershed Studies and Other Watershed Information

Previous efforts completed within the watershed are listed below. Reports will be reviewed and data will be incorporated into Stage 3 where appropriate and relevant.

2004 - Illinois State Water Survey Water Contract Report 2004-13, December 2004 – The Sediment Budget of the Illinois River – Report finds that the tributary stream of the La Moine Rivers had the highest sediment yield rates.

2005 – Social Profile: La Moine River Ecosystem Partnership. This report documents socioeconomic issues of importance and citizens' concerns for the La Moine River watershed. The report provides data on the socioeconomics of the watershed, the use of natural resources in the watershed, and citizen suggestions for BMPs. A survey distributed to land owners within the watershed found that serious problems include soil deposits in streams, drinking water quality, and groundwater quality. Similarly, streambank erosion and siltation of streams were found to be some of the greatest concerns for the watershed. The report was intended to assist in the development of the La Moine River Watershed Plan.

2006 – La Moine River Ecosystem Partnership Watershed Plan. This report was completed to address local stakeholder concerns related to water quality, wildlife habitat, and erosion in the watershed. Potential BMPs were also identified. The northeast portion of the Upper La Moine River watershed in the Drowning Fork subbasin was identified as a priority area for BMPs to reduce erosion and restore water quality.

2008 – Update to the La Moine River Watershed Implementation Plan. This update was completed to determine sediment loadings, locations, and load reductions; to verify BMPs within critical subwatershed areas identified in the original plan; and to identify specific priority gully repair projects. The report also includes a field collected assessment of livestock inventory which identified high numbers of livestock operations (39-52) located west of the Drowning Fork impaired segment, and 26-38 livestock operations in the subwatersheds where the South Branch La Moine River, La Harpe Creek, Baptist Creek, and Rock Creek impaired segments are located. Of over 1,500 operations surveyed in the entire watershed, less than 50 were observed to be limiting livestock access to streams. A streambank erosion survey found several sites within the Drowning Fork impaired segment which required streambank stabilization as well as in-stream grade control.

2009 - Prairie Creek, Hancock County, (La Moine River Watershed) and Indian Creek and Dago Slough, Knox County, (Spoon River Watershed), Quality Assurance Project Plan, Prepared for the Illinois Environmental Protection Agency. The assessment report describes geomorphologic and habitat assessment information and concludes that unstable stream channel segments exist in the majority of the assessment area.

2009 - La Moine River Watershed Targeting for NPS Control, University of Illinois 319 Grant

2009 - LaMoine River Outreach Program, Purdue University 319 Grant

Approach to Developing TMDL and Identification of Data Needs

Illinois EPA is currently developing TMDLs for pollutants that have numeric water quality standards. Of the pollutants causing impairment in the Upper La Moine River watershed; chloride, DO, manganese, ammonia and total phosphorus (Carthage Lake) are the parameters for which numeric water quality standards currently exist. In addition, LRSs will be developed for TSS, sedimentation, and total phosphorus (Drowning Fork, Prairie Creek, and South Branch La Moine River) which currently do not have numeric water quality standards. Watershed-specific water quality targets have been developed for these parameters by Illinois EPA. Refer to **Table 1-1** for a full list of potential causes of impairment. Illinois EPA believes that addressing the parameters with numeric standards through TMDLs will lead to an overall improvement in water quality due to the interrelated nature of the other listed pollutants. Recommended technical approaches for developing TMDLs and LRSs are presented in this section. Additional data needs are also discussed.

6.1 Simple and Detailed Approaches for Developing TMDLs

The range of analyses used for developing TMDLs varies from simple to complex. Examples of a simple approach include mass-balance, load-duration, and simple watershed and receiving water models. Detailed approaches incorporate the use of complex watershed and receiving water models. Simplistic approaches typically require less data than detailed approaches and therefore these are the analyses recommended for the Upper La Moine River watershed. Establishing a link between pollutant loads and resulting water quality is one of the most important steps in developing a TMDL. As discussed above, this link can be established through a variety of techniques. The objective of the remainder of this section is to recommend approaches for establishing these links for the constituents of concern in the Upper La Moine River watershed.

6.2 Additional Data Needs for TMDL and LRS Development in the Upper La Moine River Watershed

Table 6-1 contains summary information regarding data availability for all impairments to be addressed by TMDLs and LRSs in the Upper La Moine River watershed. The available datasets for impairments on Drowning Fork and in Carthage Lake are generally sufficient for basic TMDL and LRS calculations and model development. Although the available dissolved manganese data for La Harpe Creek (DGP-01) and Baptist Creek show that these segments were once impaired based on a previous standard, they are no longer impaired when compared to the currently applicable water quality standard. It is recommended that these segments be removed from the 2018 303(d) list for aquatic life use impairment by dissolved manganese. Additional data collection is recommended for the remaining segments/parameters due to a lack of recent data, limited results showing impairment, and/or data needed to support model development.

Stream (Segment ID)	Impairment Parameter	Period of Record	Data Count	Additional Data Needs
	Chloride	2002-2012	13	none
Drowning Fork (DGLC-	Phosphorus (Total)	2002-2012	17	none
01)	Sedimentation/Siltation	2002-2012	13	none
	Total Suspended Solids	2002-2012	14	none
Rock Creek (DGO-01)	Dissolved Oxygen	2002-2012	4	recommend additional DO data to confirm impairment (1 of 4 results below standard)
La Harpe	Dissolved Oxygen		0	data needed to confirm impairment and model segment
Creek (DGP)	Manganese		0	data needed to confirm impairment
La Harpe Creek (DGP-	Dissolved Oxygen	2002-2012	8	recommend additional DO data to confirm impairment (1 of 8 results below standard)
01)	Manganese	2002-2012	7	none - recommend delisting
Baptist Creek (DGPC-01)	Manganese	2007	3	none - recommend delisting
	Dissolved Oxygen	1988	13	
Prairie Creek	Phosphorus (Total)	1988	10	recommend data collection to confirm
(DGZN-01)	Total Suspended Solids (TSS)	1988	10	impairment and model segment
	Ammonia (Total)	1984, 1988	5	
South Branch	Dissolved Oxygen	1988	3	recommend data collection to confirm
La Moine River (DGZR)	Manganese		0	impairment and model segment
. ,	Phosphorus (Total)	1984, 1988	5]
Conthogo Labo	Phosphorus (Total)	2003-2012	13	none
Carthage Lake (RLE)	Total Suspended Solids (TSS)	2003-2012	24	none

Table 6-1 Data Availability and Data Needs for TMDL/LRS Development in the Upper La Moine River Watershed

6.3 Approaches for Developing TMDLs and LRSs for Stream Segments in Upper La Moine Watershed

6.3.1 Recommended Approach for Ammonia, Chloride, Total Phosphorus, Manganese, Sedimentation/Siltation, and Total Suspended Solids in Impaired Stream Segments

The recommended approach for developing TMDLs/LRSs for chloride, total phosphorus, dissolved manganese, sedimentation/siltation and TSS in streams in the Upper La Moine River watershed is the load-duration curve method. The load-duration methodology uses the cumulative frequency distribution of stream flow and pollutant concentration data to estimate the allowable loads for a waterbody. As shown in **Table 6-1**, additional data collection is recommended to confirm impairment and/or to provide more recent information for the following segments and parameters:

- La Harpe Creek (DGP) dissolved manganese
- Prairie Creek (DGZN01) total phosphorus and TSS
- South Branch La Moine River (DGZR) total ammonia, dissolved manganese, and total phosphorus

The data review performed for Baptist Creek and La Harpe Creek (DPG-01) showed that dissolved manganese concentrations in both segments support the general use and it is recommended that they be removed from the 2018 303(d) list.

6.3.2 Recommended Approach for Dissolved Oxygen TMDLs in Impaired Stream Segments

The recommended approach to TMDL development for DO impairments in streams is the development and parameterization of a series of QUAL2K models. QUAL2K is an updated spreadsheet-based version of the well-known and USEPA-supported QUAL2E model (Brown and Barnwell, 1987). The model simulates DO dynamics as a function of nitrogenous and CBOD, atmospheric re-aeration, SOD, and phytoplankton photosynthesis and respiration. The model also simulates the fate and transport of nutrients and BOD and the presence and abundance of phytoplankton (as chlorophyll-a). Stream hydrodynamics and temperature are important controlling parameters in the model. The model is suited to steady-state simulations. It is not anticipated that an additional watershed model will be needed to develop DO TMDLs for these streams. Additional data collection is recommended for La Harpe Creek (segments DGP and DGP-01), Prairie Creek, and South Branch La Moine River.

6.4 Approaches for Developing TMDL and LRS for Carthage Lake

6.4.1 Recommended Approach for Total Phosphorus TMDL

Carthage Lake is listed for impairment of the aesthetic quality use, caused by total phosphorus. The BATHTUB model (Walker, 1996) is typically recommended for TMDL development for lake and reservoir impairments such as those in Carthage Lake. The BATHTUB model performs steady-state water and nutrient balance calculations in a spatially segmented hydraulic network that account for advective and diffusive transport, and nutrient sedimentation. The model relies on empirical relationships to predict lake trophic conditions and subsequent DO conditions as functions of total phosphorus and nitrogen loads, residence time, and mean depth. Oxygen conditions in the model are simulated as meta- and hypolimnetic depletion rates, rather than explicit concentrations. Watershed loadings to the lakes will be estimated using event mean concentration data, precipitation data, and estimated flows within the watershed.

Another option for the total phosphorus TMDL for Carthage Lake is CDM Smith's Simplified Lake Analysis Model (SLAM). SLAM was developed specifically to address an identified need for a practical and low cost water quality model focused on lake eutrophication that could be easily and simply applied in planning studies by a wide range of end-users. The model was originally developed as an enhanced version of the BATHTUB model and retains many of the core algorithms of that model.

SLAM calculates lake mass and flow balances on a daily time step assuming one or more wellmixed lake zones. Each zone follows the conceptual model often referred to as a "continuously stirred tank reactor" (CSTR), whereby complete and immediate mixing is assumed for each zone in both the vertical and horizontal directions. The model targets the key parameters important for eutrophic lakes: phytoplankton (as chl-a), phosphorus (P), and nitrogen (N), and can be easily modified to aid in assessment of unrelated conservative parameters such as TSS.

SLAM also includes a state-of-the-art dynamic sediment nutrient flux module. This module calculates internal nutrient loads from the sediments to the water column as a function of shallow sediment nutrient dynamics and diffusive exchanges between sediment pore water and the overlying water column. Internal nutrient loads are a key component of many eutrophic lakes, particularly small and/or shallow lakes with large catchment areas. The inclusion of dynamic and rigorous sediment nutrient calculations within a practical planning level water quality model distinguishes SLAM from the majority of other published lake water quality models and is a particularly appealing feature for this application.

6.4.2 Recommended Approach for Total Suspended Solids LRS

A simple spreadsheet approach is recommended to calculate the reduction in TSS loading required to meet the watershed-specific LRS target value established by Illinois EPA. The calculations will utilize the watershed flow estimates similar to those developed as part of the SLAM model, the relative proportion of the lake watershed made up by each subbasin, measured in-lake TSS concentrations, and the target value developed by Illinois EPA to calculate the current daily load of TSS into the lake (lbs/day), the target load (lbs/day), and the percent reduction needed in order to meet the LRS target. This simplified approach is appropriate for LRS development as it does not require the explicit assessment of WLA and LA.

Appendix A

Land Use Catagories

Land Cover Code	Land Cover Class	Acres	Percent Watershed
1	Corn	137,054.50	37.1372
4	Sorghum	1.94	0.0005
5	Soybeans	104,626.72	28.3504
12	Sweet Corn	1.11	0.0003
13	Pop or Orn Corn	1.26	0.0003
24	Winter Wheat	456.28	0.1236
26	Dbl Crop WinWht/Soybeans	36.65	0.0099
27	Rye	24.01	0.0065
28	Oats	118.38	0.0321
36	Alfalfa	1,079.29	0.2925
37	Other Hay/Non Alfalfa	271.00	0.0734
57	Herbs	0.22	0.0001
58	Clover/Wildflowers	10.94	0.0030
59	Sod/Grass Seed	0.22	0.0001
61	Fallow/Idle Cropland	18.37	0.0050
69	Grapes	0.56	0.0002
76	Walnuts	65.31	0.0177
111	Open Water	823.91	0.2233
121	Developed/Open Space	7,331.39	1.9866
122	Developed/Low Intensity	11,458.12	3.1048
123	Developed/Med Intensity	2,505.07	0.6788
124	Developed/High Intensity	469.95	0.1273
131	Barren	142.18	0.0385
141	Deciduous Forest	59,763.62	16.1940
142	Evergreen Forest	1.43	0.0004
152	Shrubland	0.36	0.0001
176	Grass/Pasture	42,463.41	11.5062
190	Woody Wetlands	231.00	0.0626
195	Herbaceous Wetlands	28.40	0.0077
205	Triticale	11.99	0.0032
225	Dbl Crop WinWht/Corn	29.58	0.0080
229	Pumpkins	21.57	0.0058
Total		369,048.73	100

Appendix B

SSURGO Soil Series

SSURGO Soil Series Code	SSURGO Soil Series Code Definition	Dominant Hydrologic Soil Group	Acres	Percent of Watershed	ksat_l	ksat_r	ksat_h	kwfact	kffact
1334A	Birds silt loam, undrained, 0 to 2 percent slopes, frequently flooded	А	594.27	0.16	14.11	28.23	42.34		
3304A	Landes loam, 0 to 2 percent slopes, frequently flooded	А	26.16	0.01	14.11	28.23	42.34	0.37	0.37
11900	Elco silt loam, 18 to 25 percent slopes, eroded	В	670.96	0.18	4.23	9.17	14.11	0.32	0.32
134B	Camden silt loam, 2 to 5 percent slopes	В	151.13	0.04	4.23	9.17	14.11	0.43	0.43
17B	Keomah silt loam, 2 to 5 percent slopes	В	1,703.04	0.46	4.23	9.17	14.11	0.49	0.49
250D2	Velma silt loam, 10 to 18 percent slopes, eroded	В	540.87	0.15	4.23	9.17	14.11	0.32	0.32
274C2	Seaton silt loam, 5 to 10 percent slopes, eroded	В	18.80	0.01	4.23	9.17	14.11	0.55	0.55
275A	Joy silt loam, 0 to 2 percent slopes	В	27.93	0.01	4.23	9.17	14.11	0.37	0.37
279C2	Rozetta silt loam, 5 to 10 percent slopes, eroded	В	18,044.76	4.89	4.23	9.17	14.11	0.43	0.43
279C3	Rozetta silty clay loam, 5 to 10 percent slopes, severely eroded	В	161.95	0.04	4.23	9.17	14.11	0.43	0.43
280D2	Fayette silt loam, 10 to 18 percent slopes, eroded	В	853.17	0.23	4.23	9.17	14.11	0.37	0.37
280F	Fayette silt loam, 18 to 35 percent slopes	В	119.29	0.03	4.23	9.17	14.11	0.49	0.49
3077A	Huntsville silt loam, 0 to 2 percent slopes, frequently flooded	В	74.33	0.02	4.23	9.17	14.11	0.32	0.32
3107A	Sawmill silty clay loam, 0 to 2 percent slopes, frequently flooded	В	4,513.04	1.22	4.23	9.17	14.11	0.2	0.2
3284A	Tice silty clay loam, 0 to 2 percent slopes, frequently flooded	В	494.69	0.13	4.23	9.17	14.11	0.43	0.43
37B	Worthen silt loam, 2 to 5 percent slopes	В	13.54	0.00	4.23	9.17	14.11	0.37	0.37
440B	Jasper loam, 2 to 5 percent slopes	В	18.27	0.00	4.23	9.17	14.11	0.49	0.49
440C2	Jasper fine sandy loam, 5 to 10 percent slopes, eroded	В	18.09	0.00	4.23	9.17	14.11	0.24	0.24
51B	Muscatune silt loam, 2 to 5 percent slopes	В	525.77	0.14	4.23	9.17	14.11	0.32	0.32
549G	Marseilles silt loam, 35 to 60 percent slopes	В	1,514.66	0.41	4.23	9.17	14.11	0.37	0.37
61A	Atterberry silt loam, 0 to 2 percent slopes	В	2,476.76	0.67	4.23	9.17	14.11	0.37	0.37
675B	Greenbush silt loam, 2 to 5 percent slopes	В	6,420.48	1.74	4.23	9.17	14.11	0.37	0.37
7037B	Worthen silt loam, 2 to 5 percent slopes, rarely flooded	В	53.76	0.01	4.23	9.17	14.11	0.37	0.37
7134B	Camden silt loam, 2 to 5 percent slopes, rarely flooded	В	117.44	0.03	4.23	9.17	14.11	0.55	0.55
724D2	Rozetta-Elco silt loams, 10 to 18 percent slopes, eroded	В	114.49	0.03	4.23	9.17	14.11	0.37	0.37
86D2	Osco silt loam, 10 to 18 percent slopes, eroded	В	98.32	0.03	4.23	9.17	14.11	0.37	0.37
8F	Hickory silt loam, 18 to 35 percent slopes	В	21,469.24	5.82	4.23	9.17	14.11	0.32	0.32
8G	Hickory silt loam, 35 to 60 percent slopes	В	4,013.55	1.09	4.23	9.17	14.11	0.32	0.32

SSURGO Soil Series Code	SSURGO Soil Series Code Definition	Dominant Hydrologic Soil Group	Acres	Percent of Watershed	ksat_l	ksat_r	ksat_h	kwfact	kffact
9086B	Osco silt loam, terrace, 2 to 5 percent slopes	В	37.34	0.01	4.23	9.17	14.11	0.43	0.43
9279B	Rozetta silt loam, terrace, 2 to 5 percent slopes	В	518.98	0.14	4.23	9.17	14.11	0.37	0.37
936D3	Fayette-Hickory complex, 18 to 35 percent slopes, severely eroded	В	44.13	0.01	4.23	9.17	14.11	0.43	0.43
936F	Fayette-Hickory silt loams, 18 to 35 percent slopes	В	657.69	0.18	4.23	9.17	14.11	0.37	0.37
936G	Fayette-Hickory silt loams, 35 to 60 percent slopes	В	12.80	0.00	4.23	9.17	14.11	0.37	0.37
134C2	Camden silt loam, 5 to 10 percent slopes, eroded	B/D	123.02	0.03	4.23	9.17	14.11	0.32	0.32
17B2	Keomah silt loam, 2 to 5 percent slopes, eroded	B/D	3,936.25	1.07	4.23	9.17	14.11	0.49	0.49
257B2	Clarksdale silt loam, 2 to 5 percent slopes, eroded	B/D	5,653.35	1.53	4.23	9.17	14.11	0.24	0.24
259D2	Assumption silt loam, 10 to 18 percent slopes, eroded	B/D	244.51	0.07	4.23	9.17	14.11	0.49	0.49
278B	Stronghurst silt loam, 2 to 5 percent slopes	B/D	264.95	0.07	4.23	9.17	14.11	0.37	0.37
3074A	Radford silt loam, 0 to 2 percent slopes, frequently flooded	B/D	1,562.31	0.42	4.23	9.17	14.11	0.43	0.43
3107A+	Sawmill silt loam, 0 to 2 percent slopes, frequently flooded, overwash	B/D	107.33	0.03	4.23	9.17	14.11	0.32	0.32
3333A	Wakeland silt loam, 0 to 2 percent slopes, frequently flooded	B/D	4,738.26	1.28	4.23	9.17	14.11	0.37	0.37
3334A	Birds silt loam, 0 to 2 percent slopes, frequently flooded	B/D	475.38	0.13	4.23	9.17	14.11	0.37	0.37
3415A	Orion silt loam, 0 to 2 percent slopes, frequently flooded	B/D	102.16	0.03	4.23	9.17	14.11	0.32	0.32
3428A	Coffeen silt loam, 0 to 2 percent slopes, frequently flooded	B/D	4,669.13	1.27	4.23	9.17	14.11	0.37	0.37
3451A	Lawson silt loam, 0 to 2 percent slopes, frequently flooded	B/D	6,623.91	1.79	4.23	9.17	14.11	0.32	0.32
3725A	Otter-Lawson silt loams, 0 to 2 percent slopes, frequently flooded	B/D	26.26	0.01	4.23	9.17	14.11	0.37	0.37
43B	Ipava silt loam, 2 to 5 percent slopes	B/D	4,487.95	1.22	4.23	9.17	14.11	0.24	0.24
51A	Muscatune silt loam, 0 to 2 percent slopes	B/D	21,412.17	5.80	4.23	9.17	14.11	0.32	0.32
51B2	Muscatune silt loam, 2 to 5 percent slopes, eroded	B/D	4,330.63	1.17	4.23	9.17	14.11	0.49	0.49
61B	Atterberry silt loam, 2 to 5 percent slopes	B/D	287.99	0.08	4.23	9.17	14.11	0.55	0.55
61B2	Atterberry silt loam, 2 to 5 percent slopes, eroded	B/D	1,398.06	0.38	4.23	9.17	14.11	0.49	0.49
675C2	Greenbush silt loam, 5 to 10 percent slopes, eroded	B/D	87.40	0.02	4.23	9.17	14.11	0.37	0.37
7242A	Kendall silt loam, 0 to 2 percent slopes, rarely flooded	B/D	73.71	0.02	4.23	9.17	14.11	0.49	0.49
8107A	Sawmill silty clay loam, 0 to 2 percent slopes, occasionally flooded	B/D	157.55	0.04	4.23	9.17	14.11	0.32	0.32
8284A	Tice silt loam, 0 to 2 percent slopes, occasionally flooded	B/D	175.10	0.05	4.23	9.17	14.11	0.32	0.32
8415A	Orion silt loam, 0 to 2 percent slopes, occasionally flooded	B/D	253.39	0.07	4.23	9.17	14.11	0.32	0.32

SSURGO Soil Series		Dominant Hydrologic		Percent of					
Code	SSURGO Soil Series Code Definition	Soil Group	Acres	Watershed	ksat_l	ksat_r	ksat_h	kwfact	kffact
8451A	Lawson silt loam, 0 to 2 percent slopes, occasionally flooded	B/D	301.87	0.08	4.23	9.17	14.11	0.32	0.32
86B	Osco silt loam, 2 to 5 percent slopes	B/D	15,724.50	4.26	4.23	9.17	14.11	0.24	0.24
86C3	Osco silty clay loam, 5 to 10 percent slopes, severely eroded	B/D	22.45	0.01	4.23	9.17	14.11	0.32	0.32
9017B	Keomah silt loam, terrace, 2 to 5 percent slopes	B/D	243.97	0.07	4.23	9.17	14.11		
957D3	Elco-Atlas silty clay loams, 10 to 18 percent slopes, severely eroded	B/D	197.32	0.05	4.23	9.17	14.11	0.43	0.43
119C2	Elco silt loam, 5 to 10 percent slopes, eroded	С	1,651.17	0.45	4.23	9.17	14.11	0.37	0.37
249A	Edinburg silty clay loam, 0 to 2 percent slopes	С	886.34	0.24	4.23	9.17	14.11	0.43	0.43
68A+	Sable silt loam, 0 to 2 percent slopes, overwash	С	138.12	0.04	4.23	9.17	14.11	0.37	0.37
705B	Buckhart silt loam, 2 to 5 percent slopes	С	247.49	0.07	4.23	9.17	14.11	0.37	0.37
802B	Orthents, loamy, undulating	С	826.06	0.22	1.41	2.82	4.23	0.37	0.37
802E	Orthents, loamy, hilly	С	511.40	0.14	1.41	2.82	4.23	0.28	0.28
8D3	Hickory clay loam, 10 to 18 percent slopes, severely eroded	С	18.09	0.00	4.23	9.17	14.11	0.43	0.43
915D2	Elco-Ursa complex, 10 to 18 percent slopes, eroded	С	3,250.00	0.88	4.23	9.17	14.11	0.49	0.49
957D2	Elco-Atlas silt loams, 10 to 18 percent slopes, eroded	С	364.71	0.10	4.23	9.17	14.11	0.37	0.37
1070A	Beaucoup silty clay loam, 0 to 2 percent slopes, undrained, occasionally flooded	C/D	177.66	0.05	1.41	2.82	4.23	0.43	0.43
111A	Rubio silt loam, 0 to 2 percent slopes	C/D	821.14	0.22	1.41	2.82	4.23	0.37	0.37
138A	Shiloh silty clay loam, 0 to 2 percent slopes	C/D	433.33	0.12	1.41	2.82	4.23	0.28	0.28
17A	Keomah silt loam, 0 to 2 percent slopes	C/D	6,326.49	1.71	4.23	9.17	14.11	0.49	0.49
278A	Stronghurst silt loam, 0 to 2 percent slopes	C/D	905.89	0.25	4.23	9.17	14.11	0.49	0.49
279B	Rozetta silt loam, 2 to 5 percent slopes	C/D	16,859.57	4.57	4.23	9.17	14.11	0.49	0.49
280B	Fayette silt loam, 2 to 5 percent slopes	C/D	4.53	0.00	4.23	9.17	14.11	0.32	0.32
3070A	Beaucoup silty clay loam, 0 to 2 percent slopes, frequently flooded	C/D	732.16	0.20	1.41	2.82	4.23	0.37	0.37
43A	Ipava silt loam, 0 to 2 percent slopes	C/D	62,724.94	17.00	4.23	9.17	14.11	0.32	0.32
43B2	Ipava silt loam, 2 to 5 percent slopes, eroded	C/D	10,482.83	2.84	4.23	9.17	14.11	0.49	0.49
470C2	Keller silt loam, 5 to 10 percent slopes, eroded	C/D	4,779.38	1.30	4.23	9.17	14.11	0.49	0.49
50A	Virden silty clay loam, 0 to 2 percent slopes	C/D	14,381.95	3.90	4.23	9.17	14.11	0.28	0.28
675A	Greenbush silt loam, 0 to 2 percent slopes	C/D	5.88	0.00	4.23	9.17	14.11	0.32	0.32

SSURGO Soil		Dominant							
Series		Hydrologic		Percent of					
Code	SSURGO Soil Series Code Definition	Soil Group	Acres	Watershed	ksat_l	ksat_r	ksat_h	kwfact	kffact
699A	Timewell silt loam, 0 to 2 percent slopes	C/D	3,183.60	0.86	4.23	9.17	14.11	0.32	0.32
6C2	Fishhook silt loam, 5 to 10 percent slopes, eroded	C/D	5,143.51	1.39	0.42	0.92	1.41	0.32	0.32
705B2	Buckhart silt loam, 2 to 5 percent slopes, eroded	C/D	24.76	0.01	4.23	9.17	14.11	0.37	0.37
8070A	Beaucoup silty clay loam, 0 to 2 percent slopes, occasionally flooded	C/D	134.24	0.04	1.41	2.82	4.23	0.28	0.28
8077A	Huntsville silt loam, 0 to 2 percent slopes, occasionally flooded	C/D	55.25	0.01	1.41	2.82	4.23	0.32	0.32
8304A	Landes loam, 0 to 2 percent slopes, occasionally flooded	C/D	37.64	0.01	1.41	2.82	4.23	0.37	0.37
855A	Timewell and Ipava soils, 0 to 2 percent slopes	C/D	717.56	0.19	4.23	9.17	14.11	0.49	0.49
9017A	Keomah silt loam, terrace, 0 to 2 percent slopes	C/D	91.28	0.02	1.41	2.82	4.23	0.55	0.55
9043A	Ipava silt loam, terrace, 0 to 2 percent slopes	C/D	198.06	0.05	1.41	2.82	4.23	0.37	0.37
9050A	Virden silty clay loam, terrace, 0 to 2 percent slopes	C/D	476.23	0.13	4.23	9.17	14.11	0.28	0.28
9111A	Rubio silt loam, terrace, 0 to 2 percent slopes	C/D	5.76	0.00	4.23	9.17	14.11	0.43	0.43
9257A	Clarksdale silt loam, terrace, 0 to 2 percent slopes	C/D	360.11	0.10	4.23	9.17	14.11	0.37	0.37
9257B2	Clarksdale silt loam, terrace, 2 to 5 percent slopes, eroded	C/D	101.47	0.03	1.41	2.82	4.23	0.37	0.37
605000	Ursa clay loam, 18 to 25 percent slopes, severely eroded	D	451.10	0.12	0.42	0.92	1.41	0.32	0.32
119D2	Elco silt loam, 10 to 18 percent slopes, eroded	D	2,809.36	0.76	0.07	0.25	0.42	0.32	0.32
16A	Rushville silt loam, 0 to 2 percent slopes	D	37.60	0.01	0.07	0.25	0.42	0.43	0.43
259C2	Assumption silt loam, 5 to 10 percent slopes, eroded	D	2,745.32	0.74	0.07	0.25	0.42	0.32	0.32
280D3	Fayette silty clay loam, 10 to 18 percent slopes, severely eroded	D	57.34	0.02	1.41	2.82	4.23	0.43	0.43
417G	Derinda silt loam, 35 to 60 percent slopes	D	304.81	0.08	0.42	0.92	1.41	0.43	0.43
549F	Marseilles silt loam, 18 to 35 percent slopes	D	228.23	0.06	0.07	0.74	1.40		
605C2	Ursa silt loam, 5 to 10 percent slopes, eroded	D	50.61	0.01	4.23	9.17	14.11	0.43	0.43
605D2	Ursa silt loam, 10 to 18 percent slopes, eroded	D	733.25	0.20	4.23	9.17	14.11	0.43	0.43
660C3	Coatsburg silty clay loam, 5 to 10 percent slopes, severely eroded	D	162.58	0.04	1.41	2.82	4.23	0.32	0.32
6D2	Fishhook silt loam, 10 to 18 percent slopes, eroded	D	621.95	0.17	4.23	9.17	14.11	0.37	0.37
7C3	Atlas silty clay loam, 5 to 10 percent slopes, severely eroded	D	1,135.59	0.31	0.07	0.21	0.42	0.37	0.37
7D3	Atlas silty clay loam, 10 to 18 percent slopes, severely eroded	D	574.22	0.16	0.07	0.21	0.42	0.37	0.37
971D3	Fishhook-Atlas silty clay loams, 10 to 18 percent slopes, severely eroded	D	1,704.18	0.46	0.42	0.92	1.41	0.37	0.37
864	Pits, quarries		64.86	0.02	0.00	0.00	0.00		

SSURGO Soil Series Code	SSURGO Soil Series Code Definition	Dominant Hydrologic Soil Group	Acres	Percent of Watershed	ksat_l	ksat_r	ksat_h	kwfact	kffact
257A	Clarksdale silt loam, 0 to 2 percent slopes		9,267.87	2.51	0.00	0.00	0.00		
257B	Clarksdale silt loam, 2 to 5 percent slopes		2,051.60	0.56	0.00	0.00	0.00		
279D2	Rozetta silt loam, 10 to 18 percent slopes, eroded		1,632.46	0.44	0.00	0.00	0.00		
45A	Denny silt loam, 0 to 2 percent slopes		674.10	0.18	0.00	0.00	0.00		
68A	Sable silty clay loam, 0 to 2 percent slopes		38,784.84	10.51	0.00	0.00	0.00		
86B2	Osco silt loam, 2 to 5 percent slopes, eroded		11,658.11	3.16	0.00	0.00	0.00		
86C2	Osco silt loam, 5 to 10 percent slopes, eroded		6,711.00	1.82	0.00	0.00	0.00		
8D	Hickory silt loam, 10 to 18 percent slopes		507.28	0.14	0.00	0.00	0.00		
8D2	Hickory silt loam, 10 to 18 percent slopes, eroded		3,754.22	1.02	0.00	0.00	0.00		
9279C2	Rozetta silt loam, terrace, 5 to 10 percent slopes, eroded		407.52	0.11	0.00	0.00	0.00		
M-W	Miscellaneous water		63.12	0.02	0.00	0.00	0.00		
W	Water		996.49	0.27	0.00	0.00	0.00		
Total			369,048.74	100					

Appendix C

Historical Water Quality Data

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	7/18/2012	10:06	2,4-D	Total	Water	0.43	ug/l	9 ft
RLE-1	6/11/2012	10:53	2,4-D	Total	Water	0.33	ug/l	9 ft
RLE-1	4/14/2009	11:18	2,4-D, Dichlorophenoxyacetic acid	Total	Water	0.27	ug/l	9 ft
RLE-1	6/3/2009	12:05	2,4-D, Dichlorophenoxyacetic acid	Total	Water	0.27	ug/l	9 ft
RLE-1	06/04/2003	10:48	Acetochlor		Water	0.15	ug/l	11 ft
RLE-1	6/3/2009	12:05	Acetochlor	Total	Water	0.073	ug/l	9 ft
RLE-1	6/11/2012	10:53	Acetochlor	Total	Water	0.046	ug/l	9 ft
RLE-1	8/11/2009	11:10	Acetochlor	Total	Water	0.028	ug/l	9 ft
RLE-1	10/14/2009	11:10	Acetochlor	Total	Water	0.028	ug/l	9 ft
RLE-1	4/17/2012	10:33	Acetochlor	Total	Water	0.023	ug/l	9 ft
RLE-1	7/22/2009	11:10	Acetochlor	Total	Water	0.022	ug/l	9 ft
RLE-1	7/18/2012	10:06	Acetochlor	Total	Water	0.017	ug/l	9 ft
RLE-1	8/22/2012	10:26	Acetochlor	Total	Water	0.013	ug/l	9 ft
RLE-1	08/07/2003	10:41	Alkalinity, Carbonate as CaCO3	Total	Water	20	mg/l	1 ft
RLE-2	08/07/2003	11:21	Alkalinity, Carbonate as CaCO3	Total	Water	20	mg/l	1 ft
RLE-3	08/07/2003	11:38	Alkalinity, Carbonate as CaCO3	Total	Water	20	mg/l	1 ft
RLE-2	07/23/2003	11:28	Alkalinity, Carbonate as CaCO3	Total	Water	15	mg/l	1 ft
RLE-3	07/23/2003	11:48	Alkalinity, Carbonate as CaCO3	Total	Water	15	mg/l	1 ft
RLE-1	07/23/2003	10:36	Alkalinity, Carbonate as CaCO3	Total	Water	5	mg/l	1 ft
RLE-1	07/23/2003	10:36	Alkalinity, Carbonate as CaCO3	Total	Water	5	mg/l	9 ft
RLE-2	04/15/2003	11:06	Alkalinity, Carbonate as CaCO3	Total	Water	5	mg/l	1 ft
RLE-3	04/15/2003	11:20	Alkalinity, Carbonate as CaCO3	Total	Water	5	mg/l	1 ft
RLE-1	10/15/2003	11:10	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	1 ft
RLE-1	06/04/2003	10:48	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	1 ft
RLE-1	04/15/2003	10:30	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	1 ft
RLE-1	08/07/2003	10:41	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	11 ft
RLE-1	06/04/2003	10:48	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	11 ft
RLE-1	04/15/2003	10:30	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	11 ft
RLE-1	10/15/2003	11:10	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	14 ft
RLE-1	07/23/2003	10:36	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	17 ft
RLE-1	06/04/2003	10:48	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	18 ft
RLE-1	10/15/2003	11:10	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	7 ft
RLE-1	08/07/2003	10:41	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	7 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	04/15/2003	10:30	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	7 ft
RLE-2	10/15/2003	11:45	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	1 ft
RLE-2	06/04/2003	11:37	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	1 ft
RLE-3	10/15/2003	12:00	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	1 ft
RLE-3	06/04/2003	12:03	Alkalinity, Carbonate as CaCO3	Total	Water	0	mg/l	1 ft
DGP-01	9/11/2002	13:00	ALKALINITY, CARBONATE AS CACO3,Total mg/l		Water	307	mg/l	
DGLC-01	8/12/2002	15:30	ALKALINITY, CARBONATE AS CACO3,Total mg/l		Water	236	mg/l	
DGP-01	8/8/2002	12:45	ALKALINITY, CARBONATE AS CACO3,Total mg/l		Water	222	mg/l	
DGLC-01	9/11/2002	14:30	ALKALINITY, CARBONATE AS CACO3,Total mg/l		Water	208	mg/l	
DGLC-01	6/10/2002	9:00	ALKALINITY, CARBONATE AS CACO3,Total mg/l		Water	177	mg/l	
DGP-01	6/11/2002	9:00	ALKALINITY, CARBONATE AS CACO3,Total mg/l		Water	155	mg/l	
DGO-01	6/11/2002	10:45	ALKALINITY, CARBONATE AS CACO3,Total mg/l		Water	41	mg/l	
DGLC-01	8/22/2007	9:45	Alkalinity, total		Water	455	mg/l	
DGLC-01	9/26/2007	12:10	Alkalinity, total		Water	410	mg/l	
DGLC-01	9/18/2012	10:14	Alkalinity, total		Water	350	mg/l	l
DGPC-01	9/25/2007	13:40	Alkalinity, total		Water	350	mg/l	
DGPC-01	8/20/2007	11:00	Alkalinity, total		Water	316	mg/l	
DGLC-01	7/10/2012	8:29	Alkalinity, total		Water	295	mg/l	
DGP-01	9/17/2012	10:59	Alkalinity, total		Water	260	mg/l	
DGP-01	8/20/2007	11:40	Alkalinity, total		Water	250	mg/l	
DGP-01	9/25/2007	12:20	Alkalinity, total		Water	250	mg/l	
DGO-01	8/20/2007	12:20	Alkalinity, total		Water	240	mg/l	
DGLC-01	7/16/2007	9:45	Alkalinity, total		Water	216	mg/l	
DGPC-01	6/12/2007	9:00	Alkalinity, total		Water	202	mg/l	
DGLC-01	6/18/2007	14:15	Alkalinity, total		Water	202	mg/l	
DGO-01	7/3/2007	12:00	Alkalinity, total		Water	184	mg/l	
DGLC-01	5/14/2012	9:30	Alkalinity, total		Water	180	mg/l	
DGP-01	5/15/2012	11:29	Alkalinity, total		Water	180	mg/l	
DGP-01	7/18/2007	10:45	Alkalinity, total		Water	180	mg/l	
RLE-1	8/11/2009	11:25	Alkalinity, total		Water	140	mg/l	16 ft
RLE-1	7/22/2009	10:59	Alkalinity, total		Water	140	mg/l	18 ft
RLE-1	4/17/2012	10:33	Alkalinity, total		Water	120	mg/l	9 ft
RLE-1	6/11/2012	10:53	Alkalinity, total		Water	120	mg/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	4/17/2012	10:32	Alkalinity, total		Water	115	mg/l	1 ft
RLE-1	10/14/2009	11:00	Alkalinity, total		Water	115	mg/l	1 ft
RLE-1	10/14/2009	11:10	Alkalinity, total		Water	115	mg/l	9 ft
RLE-1	10/14/2009	11:20	Alkalinity, total		Water	115	mg/l	17 ft
RLE-1	6/11/2012	10:49	Alkalinity, total		Water	110	mg/l	1 ft
RLE-1	8/22/2012	10:24	Alkalinity, total		Water	110	mg/l	1 ft
RLE-1	8/22/2012	10:26	Alkalinity, total		Water	110	mg/l	9 ft
RLE-1	8/11/2009	11:10	Alkalinity, total		Water	110	mg/l	9 ft
RLE-1	8/22/2012	10:27	Alkalinity, total		Water	110	mg/l	14 ft
RLE-1	7/18/2012	10:07	Alkalinity, total		Water	110	mg/l	15 ft
DGO-01	5/15/2012	10:45	Alkalinity, total		Water	110	mg/l	
RLE-1	7/18/2012	10:06	Alkalinity, total		Water	105	mg/l	1 ft
RLE-1	7/18/2012	10:06	Alkalinity, total		Water	105	mg/l	9 ft
RLE-1	4/17/2012	10:35	Alkalinity, total		Water	105	mg/l	15 ft
RLE-1	6/11/2012	11:00	Alkalinity, total		Water	105	mg/l	16 ft
RLE-1	7/22/2009	10:51	Alkalinity, total		Water	100	mg/l	1 ft
RLE-1	8/11/2009	11:00	Alkalinity, total		Water	100	mg/l	1 ft
RLE-1	7/22/2009	11:10	Alkalinity, total		Water	100	mg/l	9 ft
RLE-1	6/3/2009	11:40	Alkalinity, total		Water	100	mg/l	17 ft
RLE-1	4/14/2009	11:28	Alkalinity, total		Water	81	mg/l	18 ft
RLE-1	4/14/2009	11:08	Alkalinity, total		Water	80	mg/l	1 ft
RLE-1	4/14/2009	11:18	Alkalinity, total		Water	80	mg/l	9 ft
RLE-1	6/3/2009	12:05	Alkalinity, total		Water	79	mg/l	9 ft
RLE-1	6/3/2009	11:30	Alkalinity, total		Water	77	mg/l	1 ft
RLE-1	07/23/2003	10:36	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	170	mg/l	17 ft
RLE-1	10/15/2003	11:10	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	150	mg/l	1 ft
RLE-1	06/04/2003	10:48	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	150	mg/l	18 ft
RLE-2	10/15/2003	11:45	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	150	mg/l	1 ft
RLE-1	06/04/2003	10:48	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	140	mg/l	11 ft
RLE-1	10/15/2003	11:10	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	140	mg/l	7 ft
RLE-3	10/15/2003	12:00	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	140	mg/l	1 ft
RLE-1	08/07/2003	10:41	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	130	mg/l	1 ft
RLE-1	06/04/2003	10:48	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	130	mg/l	1 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	10/15/2003	11:10	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	130	mg/l	14 ft
RLE-1	07/23/2003	10:36	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	130	mg/l	9 ft
RLE-2	08/07/2003	11:21	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	130	mg/l	1 ft
RLE-2	07/23/2003	11:28	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	130	mg/l	1 ft
RLE-2	06/04/2003	11:37	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	130	mg/l	1 ft
RLE-3	08/07/2003	11:38	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	130	mg/l	1 ft
RLE-3	06/04/2003	12:03	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	130	mg/l	1 ft
RLE-1	08/07/2003	10:41	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	125	mg/l	11 ft
RLE-2	04/15/2003	11:06	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	125	mg/l	1 ft
RLE-3	04/15/2003	11:20	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	115	mg/l	1 ft
RLE-1	07/23/2003	10:36	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	110	mg/l	1 ft
RLE-1	04/15/2003	10:30	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	105	mg/l	1 ft
RLE-1	04/15/2003	10:30	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	105	mg/l	11 ft
RLE-1	04/15/2003	10:30	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	105	mg/l	7 ft
RLE-1	08/07/2003	10:41	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	100	mg/l	7 ft
RLE-3	07/23/2003	11:48	Alkalinity, Total (total hydroxide+carbonate+bicarbonate)	Total	Water	100	mg/l	1 ft
DGLC-01	9/18/2012	10:14	Aluminum	Total	Water	1870	ug/l	
RLE-1	6/3/2009	12:05	Aluminum	Total	Water	1720	ug/l	9 ft
DGLC-01	8/22/2007	9:45	Aluminum	Total	Water	1700	ug/l	
RLE-1	4/14/2009	11:18	Aluminum	Total	Water	1470	ug/l	9 ft
RLE-1	8/22/2012	10:26	Aluminum	Total	Water	1020	ug/l	9 ft
DGLC-01	9/26/2007	12:10	Aluminum	Total	Water	1010	ug/l	
RLE-1	7/18/2012	10:06	Aluminum	Total	Water	862	ug/l	9 ft
RLE-1	7/22/2009	11:10	Aluminum	Total	Water	862	ug/l	9 ft
DGLC-BU-C2	9/5/2007	11:45	Aluminum	Total	Water	820	ug/l	
DGLC-01	5/14/2012	9:30	Aluminum	Total	Water	767	ug/l	
RLE-1	4/17/2012	10:33	Aluminum	Total	Water	627	ug/l	9 ft
DGP-01	5/15/2012	11:29	Aluminum	Total	Water	627	ug/l	
DGLC-01	7/10/2012	8:29	Aluminum	Total	Water	609	ug/l	
DGP-01	7/18/2007	10:45	Aluminum	Total	Water	570	ug/l	
RLE-1	10/14/2009	11:10	Aluminum	Total	Water	529	ug/l	9 ft
DGLC-BU-C1	9/5/2007	10:00	Aluminum	Total	Water	450	ug/l	
RLE-1	6/11/2012	10:53	Aluminum	Total	Water	431	ug/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	10/15/2003	11:10	Aluminum	Total	Water	320	ug/l	7 ft
DGP-01	8/20/2007	11:40	Aluminum	Total	Water	270	ug/l	
RLE-1	06/04/2003	10:48	Aluminum	Total	Water	210	ug/l	11 ft
DGO-01	7/3/2007	12:00	Aluminum	Total	Water	190	ug/l	
DGPC-01	8/20/2007	11:00	Aluminum	Total	Water	190	ug/l	
DGLC-01	9/26/2007	12:10	Aluminum	Dissolved	Water	175	ug/l	
DGO-01	8/20/2007	12:20	Aluminum	Total	Water	170	ug/l	
DGLC-01	6/18/2007	14:15	Aluminum	Total	Water	160	ug/l	
RLE-1	8/11/2009	11:10	Aluminum	Total	Water	133	ug/l	9 ft
RLE-1	08/07/2003	10:41	Aluminum	Total	Water	110	ug/l	7 ft
DGLC-BU-E1	9/5/2007	11:10	Aluminum	Total	Water	110	ug/l	
DGLC-01	7/16/2007	9:45	Aluminum	Total	Water	100	ug/l	
DGO-01	5/15/2012	10:45	Aluminum	Total	Water	98.2	ug/l	
DGPC-01	6/12/2007	9:00	Aluminum	Total	Water	90	ug/l	
DGP-01	9/25/2007	12:20	Aluminum	Total	Water	90	ug/l	
DGLC-01	8/22/2007	9:45	Aluminum	Dissolved	Water	59	ug/l	
DGLC-01	7/10/2012	8:29	Aluminum	Dissolved	Water	25.8	ug/l	
DGPC-01	9/25/2007	13:40	Aluminum	Dissolved	Water	10	ug/l	
DGLC-01	9/18/2012	10:14	Aluminum	Dissolved	Water	5.28	ug/l	
DGPC-01	9/25/2007	13:40	Aluminum	Total	Water	4.2	ug/l	
DGP-01	9/25/2007	12:20	Aluminum	Dissolved	Water	1.8	ug/l	
DGO-01	6/11/2002	10:45	ALUMINUM,Dissolved ug/l	Dissolved	Water	340	ug/l	
DGLC-01	8/12/2002	15:30	ALUMINUM,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGP-01	8/8/2002	12:45	ALUMINUM,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGLC-01	6/10/2002	9:00	ALUMINUM,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGP-01	6/11/2002	9:00	ALUMINUM,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGP-01	9/11/2002	13:00	ALUMINUM,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGLC-01	9/11/2002	14:30	ALUMINUM,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGO-01	6/11/2002	10:45	ALUMINUM,Total ug/l	Total	Water	27000	ug/l	
DGP-01	6/11/2002	9:00	ALUMINUM,Total ug/l	Total	Water	2600	ug/l	
DGLC-01	6/10/2002	9:00	ALUMINUM,Total ug/l	Total	Water	2100	ug/l	
DGLC-01	8/12/2002	15:30	ALUMINUM,Total ug/l	Total	Water	1500	ug/l	
DGLC-01	9/11/2002	14:30	ALUMINUM,Total ug/l	Total	Water	1100	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	8/8/2002	12:45	ALUMINUM,Total ug/l	Total	Water	280	ug/l	
DGP-01	9/11/2002	13:00	ALUMINUM,Total ug/l	Total	Water	120	ug/l	
RLE-1	4/17/2012	10:32	Ammonia-nitrogen	Total	Water	0.58	mg/l	1 ft
RLE-1	8/22/2012	10:27	Ammonia-nitrogen	Total	Water	0.58	mg/l	14 ft
RLE-1	8/22/2012	10:26	Ammonia-nitrogen	Total	Water	0.52	mg/l	9 ft
RLE-1	8/22/2012	10:24	Ammonia-nitrogen	Total	Water	0.45	mg/l	1 ft
RLE-1	7/18/2012	10:07	Ammonia-nitrogen	Total	Water	0.3	mg/l	15 ft
DGLC-01	9/18/2012	8:39	Ammonia-nitrogen	Total	Water	0.21	mg/l	
RLE-1	6/11/2012	11:00	Ammonia-nitrogen	Total	Water	0.16	mg/l	16 ft
DGP-01	7/17/2012	8:06	Ammonia-nitrogen	Total	Water	0.12	mg/l	
DGLC-01	9/18/2012	10:14	Ammonia-nitrogen	Total	Water	0.12	mg/l	
RLE-1	7/18/2012	10:06	Ammonia-nitrogen	Total	Water	0.1	mg/l	9 ft
DGLC-01	8/22/2007	9:45	Arsenic	Total	Water	11	ug/l	
DGLC-01	7/10/2012	8:29	Arsenic	Total	Water	10.4	ug/l	
DGLC-01	7/10/2012	8:29	Arsenic	Dissolved	Water	9.94	ug/l	
RLE-3	07/23/2003	11:48	Arsenic	Total	Sediment	8.4	mg/kg	15 ft
DGLC-01	9/26/2007	12:10	Arsenic	Total	Water	8.24	ug/l	
RLE-1	07/23/2003	10:36	Arsenic	Total	Sediment	8	mg/kg	19 ft
DGLC-01	9/26/2007	12:10	Arsenic	Dissolved	Water	6.59	ug/l	
DGLC-01	9/18/2012	10:14	Arsenic	Total	Water	6.16	ug/l	
DGLC-01	9/18/2012	10:14	Arsenic	Dissolved	Water	6.1	ug/l	
DGO-01	8/20/2007	12:20	Arsenic	Total	Water	5.9	ug/l	
RLE-1	8/22/2012	10:26	Arsenic	Total	Water	3.31	ug/l	9 ft
DGPC-01	9/25/2007	13:40	Arsenic	Dissolved	Water	3.2	ug/l	
RLE-1	7/22/2009	11:10	Arsenic	Total	Water	3.12	ug/l	9 ft
RLE-1	10/14/2009	11:10	Arsenic	Total	Water	3.06	ug/l	9 ft
RLE-1	08/07/2003	10:41	Arsenic	Total	Water	3	ug/l	7 ft
DGPC-01	9/25/2007	13:40	Arsenic	Total	Water	3	ug/l	
RLE-1	07/23/2003	10:36	Arsenic	Total	Water	2.8	ug/l	9 ft
DGP-01	8/20/2007	11:40	Arsenic	Total	Water	2.8	ug/l	
DGPC-01	8/20/2007	11:00	Arsenic	Total	Water	2.7	ug/l	
RLE-1	7/18/2012	10:06	Arsenic	Total	Water	2.62	ug/l	9 ft
DGLC-01	6/18/2007	14:15	Arsenic	Total	Water	2.5	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	9/17/2012	10:59	Arsenic	Dissolved	Water	2.33	ug/l	
DGP-01	9/25/2007	12:20	Arsenic	Total	Water	2.3	ug/l	
DGP-01	9/17/2012	10:59	Arsenic	Total	Water	2.26	ug/l	
DGLC-01	7/16/2007	9:45	Arsenic	Total	Water	2.2	ug/l	
DGP-01	5/15/2012	11:29	Arsenic	Total	Water	1.88	ug/l	
RLE-1	10/15/2003	11:10	Arsenic	Total	Water	1.8	ug/l	7 ft
DGP-01	9/25/2007	12:20	Arsenic	Dissolved	Water	1.6	ug/l	
DGPC-01	6/12/2007	9:00	Arsenic	Total	Water	1.6	ug/l	
RLE-1	06/04/2003	10:48	Arsenic	Total	Water	1.4	ug/l	11 ft
RLE-1	6/3/2009	12:05	Arsenic	Total	Water	1.31	ug/l	9 ft
DGO-01	7/3/2007	12:00	Arsenic	Dissolved	Water	1.3	ug/l	
RLE-1	8/11/2009	11:10	Arsenic	Total	Water	1.27	ug/l	9 ft
DGP-01	7/18/2007	10:45	Arsenic	Total	Water	1.2	ug/l	
RLE-1	04/15/2003	10:30	Arsenic	Total	Water	1.1	ug/l	7 ft
DGO-01	7/3/2007	12:00	Arsenic	Total	Water	0.57	ug/l	
DGLC-01	8/12/2002	15:30	ARSENIC,Total	Total	Water	5.8	ug/l	
DGO-01	6/11/2002	10:45	ARSENIC,Total	Total	Water	2.9	ug/l	
DGLC-01	9/11/2002	14:30	ARSENIC,Total	Total	Water	2.6	ug/l	
DGP-01	8/8/2002	12:45	ARSENIC,Total	Total	Water	1.6	ug/l	
DGP-01	6/11/2002	9:00	ARSENIC,Total	Total	Water	1.5	ug/l	
DGP-01	9/11/2002	13:00	ARSENIC,Total	Total	Water	1.4	ug/l	
DGLC-01	6/10/2002	9:00	ARSENIC,Total	Total	Water	0.82	ug/l	
RLE-1	6/3/2009	12:05	Atrazine	Total	Water	5	ug/l	9 ft
RLE-1	7/22/2009	11:10	Atrazine	Total	Water	3.3	ug/l	9 ft
RLE-1	8/11/2009	11:10	Atrazine	Total	Water	3.1	ug/l	9 ft
RLE-1	10/14/2009	11:10	Atrazine	Total	Water	1.6	ug/l	9 ft
RLE-1	08/07/2003	10:41	Atrazine	Total	Water	1	ug/l	7 ft
RLE-1	6/11/2012	10:53	Atrazine	Total	Water	0.88	ug/l	9 ft
RLE-1	06/04/2003	10:48	Atrazine	Total	Water	0.84	ug/l	11 ft
RLE-1	06/04/2003	10:48	Atrazine	Total	Water	0.75	ug/l	11 ft
RLE-1	7/18/2012	10:06	Atrazine	Total	Water	0.74	ug/l	9 ft
RLE-1	04/15/2003	10:30	Atrazine	Total	Water	0.67	ug/l	427 ft
RLE-1	07/23/2003	10:36	Atrazine	Total	Water	0.67	ug/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	04/15/2003	10:30	Atrazine	Total	Water	0.63	ug/l	427 ft
RLE-1	8/22/2012	10:26	Atrazine	Total	Water	0.61	ug/l	9 ft
RLE-1	08/07/2003	10:41	Atrazine	Total	Water	0.6	ug/l	7 ft
RLE-1	4/17/2012	10:33	Atrazine	Total	Water	0.4	ug/l	9 ft
RLE-1	10/15/2003	11:10	Atrazine	Total	Water	0.34	ug/l	7 ft
RLE-1	10/15/2003	11:10	Atrazine	Total	Water	0.32	ug/l	7 ft
RLE-1	4/14/2009	11:18	Atrazine	Total	Water	0.051	ug/l	9 ft
DGLC-01	8/22/2007	9:45	Barium	Total	Water	310	ug/l	
RLE-1	07/23/2003	10:36	Barium	Total	Sediment	280	mg/kg	19 ft
RLE-1	7/22/2009	10:51	Barium	Total	Sediment	270	mg/kg	20 ft
DGLC-01	9/18/2012	10:14	Barium	Total	Water	270	ug/l	
DGLC-01	8/22/2007	9:45	Barium	Dissolved	Water	260	ug/l	
DGLC-01	9/18/2012	10:14	Barium	Dissolved	Water	242	ug/l	
RLE-3	07/23/2003	11:48	Barium	Total	Sediment	220	mg/kg	15 ft
DGLC-01	9/26/2007	12:10	Barium	Total	Water	211	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Barium	Total	Water	200	ug/l	
DGLC-01	9/26/2007	12:10	Barium	Dissolved	Water	199	ug/l	
DGPC-01	8/20/2007	11:00	Barium	Total	Water	190	ug/l	
DGPC-01	8/20/2007	11:00	Barium	Dissolved	Water	170	ug/l	
DGPC-01	9/25/2007	13:40	Barium	Total	Water	160	ug/l	
DGPC-01	9/25/2007	13:40	Barium	Dissolved	Water	140	ug/l	
DGO-01	8/20/2007	12:20	Barium	Total	Water	140	ug/l	
DGLC-01	7/10/2012	8:29	Barium	Total	Water	137	ug/l	
DGO-01	8/20/2007	12:20	Barium	Dissolved	Water	130	ug/l	
DGP-01	8/20/2007	11:40	Barium	Total	Water	130	ug/l	
DGO-01	7/3/2007	12:00	Barium	Dissolved	Water	120	ug/l	
DGP-01	8/20/2007	11:40	Barium	Dissolved	Water	120	ug/l	
DGO-01	7/3/2007	12:00	Barium	Total	Water	120	ug/l	
DGP-01	7/18/2007	10:45	Barium	Total	Water	120	ug/l	
DGP-01	9/25/2007	12:20	Barium	Total	Water	120	ug/l	
DGLC-01	7/10/2012	8:29	Barium	Dissolved	Water	114	ug/l	
DGO-01	5/15/2012	10:45	Barium	Total	Water	111	ug/l	
DGPC-01	6/12/2007	9:00	Barium	Dissolved	Water	110	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	9/25/2007	12:20	Barium	Dissolved	Water	110	ug/l	
DGPC-01	6/12/2007	9:00	Barium	Total	Water	110	ug/l	
DGLC-01	7/16/2007	9:45	Barium	Total	Water	110	ug/l	
DGLC-BU-C1	9/5/2007	10:00	Barium	Total	Water	110	ug/l	
DGP-01	5/15/2012	11:29	Barium	Total	Water	109	ug/l	
RLE-1	8/22/2012	10:26	Barium	Total	Water	107	ug/l	9 ft
DGO-01	5/15/2012	10:45	Barium	Dissolved	Water	103	ug/l	
DGP-01	9/17/2012	10:59	Barium	Total	Water	102	ug/l	
DGP-01	5/15/2012	11:29	Barium	Dissolved	Water	99.3	ug/l	
DGLC-01	5/14/2012	9:30	Barium	Total	Water	99.2	ug/l	
DGLC-01	6/18/2007	14:15	Barium	Total	Water	98	ug/l	
DGP-01	9/17/2012	10:59	Barium	Dissolved	Water	96.7	ug/l	
DGLC-01	6/18/2007	14:15	Barium	Dissolved	Water	93	ug/l	
RLE-1	4/17/2012	10:33	Barium	Total	Water	90.9	ug/l	9 ft
DGLC-01	5/14/2012	9:30	Barium	Dissolved	Water	89.8	ug/l	
RLE-1	7/18/2012	10:06	Barium	Total	Water	89	ug/l	9 ft
RLE-1	6/3/2009	12:05	Barium	Total	Water	85.9	ug/l	9 ft
RLE-1	4/14/2009	11:18	Barium	Total	Water	80.8	ug/l	9 ft
RLE-1	6/11/2012	10:53	Barium	Total	Water	80.3	ug/l	9 ft
RLE-1	7/22/2009	11:10	Barium	Total	Water	79.3	ug/l	9 ft
RLE-1	06/04/2003	10:48	Barium	Total	Water	79	ug/l	11 ft
RLE-1	10/14/2009	11:10	Barium	Total	Water	75.1	ug/l	9 ft
RLE-1	10/15/2003	11:10	Barium	Total	Water	75	ug/l	7 ft
RLE-1	04/15/2003	10:30	Barium	Total	Water	70	ug/l	7 ft
RLE-1	08/07/2003	10:41	Barium	Total	Water	61	ug/l	7 ft
RLE-1	8/11/2009	11:10	Barium	Total	Water	60.6	ug/l	9 ft
RLE-1	07/23/2003	10:36	Barium	Total	Water	60	ug/l	9 ft
DGLC-BU-E1	9/5/2007	11:10	Barium	Total	Water	41	ug/l	
DGLC-01	6/10/2002	9:00	BARIUM,Dissolved ug/l	Dissolved	Water	330	ug/l	
DGLC-01	8/12/2002	15:30	BARIUM,Dissolved ug/l	Dissolved	Water	120	ug/l	
DGLC-01	9/11/2002	14:30	BARIUM,Dissolved ug/l	Dissolved	Water	120	ug/l	
DGP-01	8/8/2002	12:45	BARIUM,Dissolved ug/l	Dissolved	Water	110	ug/l	
DGP-01	9/11/2002	13:00	BARIUM,Dissolved ug/l	Dissolved	Water	110	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	6/11/2002	9:00	BARIUM,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGO-01	6/11/2002	10:45	BARIUM,Dissolved ug/l	Dissolved	Water	61	ug/l	
DGO-01	6/11/2002	10:45	BARIUM,Total ug/l	Total	Water	540	ug/l	
DGLC-01	8/12/2002	15:30	BARIUM,Total ug/l	Total	Water	150	ug/l	
DGLC-01	6/10/2002	9:00	BARIUM,Total ug/l	Total	Water	140	ug/l	
DGP-01	6/11/2002	9:00	BARIUM,Total ug/l	Total	Water	140	ug/l	
DGLC-01	9/11/2002	14:30	BARIUM,Total ug/l	Total	Water	130	ug/l	
DGP-01	8/8/2002	12:45	BARIUM,Total ug/l	Total	Water	120	ug/l	
DGP-01	9/11/2002	13:00	BARIUM,Total ug/l	Total	Water	110	ug/l	
RLE-1	8/22/2012	10:26	Beryllium	Total	Water	0.19	ug/l	9 ft
RLE-1	4/17/2012	10:33	Beryllium	Total	Water	0.18	ug/l	9 ft
DGLC-01	8/12/2002	15:30	BERYLLIUM,Dissolved ug/l	Dissolved	Water	1	ug/l	
DGP-01	8/8/2002	12:45	BERYLLIUM, Dissolved ug/l	Dissolved	Water	1	ug/l	
DGLC-01	6/10/2002	9:00	BERYLLIUM, Dissolved ug/l	Dissolved	Water	1	ug/l	
DGP-01	6/11/2002	9:00	BERYLLIUM,Dissolved ug/l	Dissolved	Water	1	ug/l	
DGO-01	6/11/2002	10:45	BERYLLIUM, Dissolved ug/l	Dissolved	Water	1	ug/l	
DGP-01	9/11/2002	13:00	BERYLLIUM, Dissolved ug/l	Dissolved	Water	1	ug/l	
DGLC-01	9/11/2002	14:30	BERYLLIUM, Dissolved ug/l	Dissolved	Water	1	ug/l	
DGO-01	6/11/2002	10:45	BERYLLIUM,Total ug/l	Total	Water	3	ug/l	
DGLC-01	8/12/2002	15:30	BERYLLIUM,Total ug/l	Total	Water	1	ug/l	
DGP-01	8/8/2002	12:45	BERYLLIUM,Total ug/l	Total	Water	1	ug/l	
DGLC-01	6/10/2002	9:00	BERYLLIUM,Total ug/l	Total	Water	1	ug/l	
DGP-01	6/11/2002	9:00	BERYLLIUM,Total ug/l	Total	Water	1	ug/l	
DGP-01	9/11/2002	13:00	BERYLLIUM,Total ug/l	Total	Water	1	ug/l	
DGLC-01	9/11/2002	14:30	BERYLLIUM,Total ug/l	Total	Water	1	ug/l	
RLE-1	6/11/2012	10:53	BHC-alpha	Total	Water	0.0026	ug/l	9 ft
RLE-1	4/14/2009	11:18	BHC-alpha	Total	Water	0.0013	ug/l	9 ft
RLE-1	7/18/2012	10:06	BHC-alpha	Total	Water	0.0012	ug/l	9 ft
DGLC-BU-E1	9/5/2007	11:10	BOD, Biochemical oxygen demand	Total	Water	11	mg/l	
DGLC-BU-C2	9/5/2007	11:45	BOD, Biochemical oxygen demand	Total	Water	11	mg/l	
DGLC-BU-C1	9/5/2007	10:00	BOD, Biochemical oxygen demand	Total	Water	10	mg/l	
DGP-01	9/25/2007	10:45	BOD, Biochemical oxygen demand	Total	Water	3.93	mg/l	
DGLC-BU-E1	9/5/2007	11:10	BOD, carbonaceous	Total	Water	11	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-BU-C2	9/5/2007	11:45	BOD, carbonaceous	Total	Water	11	mg/l	
DGLC-BU-C1	9/5/2007	10:00	BOD, carbonaceous	Total	Water	10	mg/l	
DGP-01	9/25/2007	10:45	BOD, carbonaceous	Total	Water	5.7	mg/l	
DGP-01	7/16/2007	11:00	BOD, carbonaceous	Total	Water	2	mg/l	
DGP-01	9/17/2007	10:45	BOD, carbonaceous	Total	Water	2	mg/l	
DGLC-BU-E1	9/5/2007	11:10	Boron	Total	Water	1700	ug/l	
DGLC-BU-C1	9/5/2007	10:00	Boron	Total	Water	1500	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Boron	Total	Water	1500	ug/l	
DGLC-01	9/26/2007	12:10	Boron	Total	Water	1430	ug/l	
DGLC-01	9/26/2007	12:10	Boron	Dissolved	Water	1390	ug/l	
DGLC-01	9/18/2012	10:14	Boron	Total	Water	1280	ug/l	
DGLC-01	9/18/2012	10:14	Boron	Dissolved	Water	1220	ug/l	
DGLC-01	8/22/2007	9:45	Boron	Total	Water	1100	ug/l	
DGLC-01	8/22/2007	9:45	Boron	Dissolved	Water	1000	ug/l	
DGLC-01	7/10/2012	8:29	Boron	Total	Water	332	ug/l	
DGLC-01	7/10/2012	8:29	Boron	Dissolved	Water	326	ug/l	
DGLC-01	7/16/2007	9:45	Boron	Total	Water	130	ug/l	
DGPC-01	9/25/2007	13:40	Boron	Total	Water	72	ug/l	
DGPC-01	8/20/2007	11:00	Boron	Dissolved	Water	65	ug/l	
DGPC-01	8/20/2007	11:00	Boron	Total	Water	60	ug/l	
DGPC-01	9/25/2007	13:40	Boron	Dissolved	Water	53	ug/l	
DGLC-01	6/18/2007	14:15	Boron	Total	Water	51	ug/l	
DGLC-01	6/18/2007	14:15	Boron	Dissolved	Water	50	ug/l	
DGO-01	8/20/2007	12:20	Boron	Dissolved	Water	36	ug/l	
DGP-01	8/20/2007	11:40	Boron	Dissolved	Water	34	ug/l	
DGP-01	9/25/2007	12:20	Boron	Total	Water	34	ug/l	
DGP-01	8/20/2007	11:40	Boron	Total	Water	32	ug/l	
DGO-01	8/20/2007	12:20	Boron	Total	Water	31	ug/l	
DGP-01	9/25/2007	12:20	Boron	Dissolved	Water	28	ug/l	
DGP-01	9/17/2012	10:59	Boron	Total	Water	26.2	ug/l	
RLE-1	06/04/2003	10:48	Boron	Total	Water	26	ug/l	11 ft
DGP-01	9/17/2012	10:59	Boron	Dissolved	Water	25.7	ug/l	
DGPC-01	6/12/2007	9:00	Boron	Total	Water	24	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	7/18/2007	10:45	Boron	Total	Water	24	ug/l	
DGPC-01	6/12/2007	9:00	Boron	Dissolved	Water	22	ug/l	
DGO-01	7/3/2007	12:00	Boron	Dissolved	Water	21	ug/l	
RLE-1	10/15/2003	11:10	Boron	Total	Water	16	ug/l	7 ft
DGO-01	7/3/2007	12:00	Boron	Total	Water	16	ug/l	
RLE-1	08/07/2003	10:41	Boron	Total	Water	12	ug/l	7 ft
RLE-1	07/23/2003	10:36	Boron	Total	Water	10	ug/l	9 ft
RLE-1	8/11/2009	11:10	Boron	Total	Water	9.06	ug/l	9 ft
RLE-1	4/14/2009	11:18	Boron	Total	Water	7.19	ug/l	9 ft
RLE-1	7/22/2009	11:10	Boron	Total	Water	4.07	ug/l	9 ft
DGLC-01	8/12/2002	15:30	BORON,Dissolved ug/l	Dissolved	Water	200	ug/l	
DGLC-01	6/10/2002	9:00	BORON,Dissolved ug/l	Dissolved	Water	170	ug/l	
DGLC-01	9/11/2002	14:30	BORON,Dissolved ug/l	Dissolved	Water	170	ug/l	
DGP-01	8/8/2002	12:45	BORON,Dissolved ug/l	Dissolved	Water	24	ug/l	
DGO-01	6/11/2002	10:45	BORON,Dissolved ug/l	Dissolved	Water	17	ug/l	
DGP-01	9/11/2002	13:00	BORON,Dissolved ug/l	Dissolved	Water	17	ug/l	
DGP-01	6/11/2002	9:00	BORON,Dissolved ug/l	Dissolved	Water	14	ug/l	
DGLC-01	8/12/2002	15:30	BORON,Total ug/l	Total	Water	220	ug/l	
DGLC-01	9/11/2002	14:30	BORON,Total ug/l	Total	Water	170	ug/l	
DGO-01	6/11/2002	10:45	BORON,Total ug/l	Total	Water	49	ug/l	
DGP-01	8/8/2002	12:45	BORON,Total ug/l	Total	Water	29	ug/l	
DGLC-01	6/10/2002	9:00	BORON,Total ug/l	Total	Water	20	ug/l	
DGP-01	9/11/2002	13:00	BORON,Total ug/l	Total	Water	18	ug/l	
DGP-01	6/11/2002	9:00	BORON,Total ug/l	Total	Water	17	ug/l	
RLE-1	7/22/2009	10:51	Cadmium	Total	Sediment	2.96	mg/kg	20 ft
RLE-1	10/14/2009	11:10	Cadmium	Total	Water	1.49	ug/l	9 ft
DGP-01	9/25/2007	12:20	Cadmium	Dissolved	Water	0.82	ug/l	
RLE-1	4/14/2009	11:18	Cadmium	Total	Water	0.76	ug/l	9 ft
DGLC-01	9/26/2007	12:10	Cadmium	Total	Water	0.68	ug/l	
DGP-01	9/25/2007	12:20	Cadmium	Total	Water	0.46	ug/l	
DGP-01	9/17/2012	10:59	Cadmium	Total	Water	0.4	ug/l	
RLE-1	6/11/2012	10:53	Cadmium	Total	Water	0.38	ug/l	9 ft
DGLC-01	9/26/2007	12:10	Cadmium	Dissolved	Water	0.37	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	9/18/2012	10:14	Cadmium	Total	Water	0.37	ug/l	
DGLC-01	5/14/2012	9:30	Cadmium	Total	Water	0.35	ug/l	
RLE-1	7/22/2009	11:10	Cadmium	Total	Water	0.34	ug/l	9 ft
RLE-1	8/11/2009	11:10	Cadmium	Total	Water	0.32	ug/l	9 ft
DGP-01	9/17/2012	10:59	Cadmium	Dissolved	Water	0.26	ug/l	
DGLC-01	9/18/2012	10:14	Cadmium	Dissolved	Water	0.25	ug/l	
DGPC-01	9/25/2007	13:40	Cadmium	Dissolved	Water	0.08	ug/l	
DGP-01	8/8/2002	12:45	CADMIUM,Dissolved ug/l	Dissolved	Water	6	ug/l	
DGLC-01	8/12/2002	15:30	CADMIUM,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGLC-01	6/10/2002	9:00	CADMIUM,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGP-01	6/11/2002	9:00	CADMIUM,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGO-01	6/11/2002	10:45	CADMIUM,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGP-01	9/11/2002	13:00	CADMIUM, Dissolved ug/l	Dissolved	Water	3	ug/l	
DGLC-01	9/11/2002	14:30	CADMIUM,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGP-01	8/8/2002	12:45	CADMIUM,Total ug/l	Total	Water	4	ug/l	
DGLC-01	8/12/2002	15:30	CADMIUM,Total ug/l	Total	Water	3	ug/l	
DGLC-01	6/10/2002	9:00	CADMIUM,Total ug/l	Total	Water	3	ug/l	
DGP-01	6/11/2002	9:00	CADMIUM,Total ug/l	Total	Water	3	ug/l	
DGO-01	6/11/2002	10:45	CADMIUM,Total ug/l	Total	Water	3	ug/l	
DGP-01	9/11/2002	13:00	CADMIUM,Total ug/l	Total	Water	3	ug/l	
DGLC-01	9/11/2002	14:30	CADMIUM,Total ug/l	Total	Water	3	ug/l	
DGLC-BU-E1	9/5/2007	11:10	Calcium	Total	Water	210000	ug/l	
DGLC-BU-C1	9/5/2007	10:00	Calcium	Total	Water	200000	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Calcium	Total	Water	190000	ug/l	
DGLC-01	9/26/2007	12:10	Calcium	Total	Water	172000	ug/l	
DGLC-01	9/26/2007	12:10	Calcium	Dissolved	Water	162000	ug/l	
DGLC-01	8/22/2007	9:45	Calcium	Total	Water	160000	ug/l	
DGLC-01	8/22/2007	9:45	Calcium	Dissolved	Water	150000	ug/l	
DGLC-01	9/18/2012	10:14	Calcium	Total	Water	144000	ug/l	
DGLC-01	9/18/2012	10:14	Calcium	Dissolved	Water	140000	ug/l	
DGLC-01	7/10/2012	8:29	Calcium	Total	Water	79800	ug/l	
DGPC-01	9/25/2007	13:40	Calcium	Total	Water	77000	ug/l	
DGLC-01	7/10/2012	8:29	Calcium	Dissolved	Water	76100	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGPC-01	8/20/2007	11:00	Calcium	Dissolved	Water	72000	ug/l	
DGPC-01	8/20/2007	11:00	Calcium	Total	Water	71000	ug/l	
DGO-01	8/20/2007	12:20	Calcium	Total	Water	69000	ug/l	
DGO-01	8/20/2007	12:20	Calcium	Dissolved	Water	68000	ug/l	
DGLC-01	7/16/2007	9:45	Calcium	Total	Water	68000	ug/l	
DGP-01	8/20/2007	11:40	Calcium	Dissolved	Water	66000	ug/l	
DGPC-01	9/25/2007	13:40	Calcium	Dissolved	Water	64000	ug/l	
DGP-01	8/20/2007	11:40	Calcium	Total	Water	64000	ug/l	
DGP-01	9/25/2007	12:20	Calcium	Total	Water	62000	ug/l	
DGPC-01	6/12/2007	9:00	Calcium	Dissolved	Water	61000	ug/l	
DGLC-01	6/18/2007	14:15	Calcium	Dissolved	Water	61000	ug/l	
DGPC-01	6/12/2007	9:00	Calcium	Total	Water	61000	ug/l	
DGLC-01	6/18/2007	14:15	Calcium	Total	Water	61000	ug/l	
DGP-01	9/25/2007	12:20	Calcium	Dissolved	Water	60000	ug/l	
DGP-01	5/15/2012	11:29	Calcium	Total	Water	59200	ug/l	
DGP-01	5/15/2012	11:29	Calcium	Dissolved	Water	59100	ug/l	
DGO-01	7/3/2007	12:00	Calcium	Dissolved	Water	59000	ug/l	
DGP-01	7/18/2007	10:45	Calcium	Total	Water	58000	ug/l	
DGLC-01	5/14/2012	9:30	Calcium	Dissolved	Water	55400	ug/l	
DGLC-01	5/14/2012	9:30	Calcium	Total	Water	55100	ug/l	
DGO-01	7/3/2007	12:00	Calcium	Total	Water	55000	ug/l	
DGP-01	9/17/2012	10:59	Calcium	Dissolved	Water	49600	ug/l	
DGP-01	9/17/2012	10:59	Calcium	Total	Water	49500	ug/l	
DGO-01	5/15/2012	10:45	Calcium	Total	Water	44700	ug/l	
DGO-01	5/15/2012	10:45	Calcium	Dissolved	Water	41900	ug/l	
RLE-1	4/17/2012	10:33	Calcium	Total	Water	36100	ug/l	9 ft
RLE-1	6/11/2012	10:53	Calcium	Total	Water	33200	ug/l	9 ft
RLE-1	8/22/2012	10:26	Calcium	Total	Water	33100	ug/l	9 ft
RLE-1	10/14/2009	11:10	Calcium	Total	Water	29800	ug/l	9 ft
RLE-1	4/14/2009	11:18	Calcium	Total	Water	29400	ug/l	9 ft
RLE-1	7/18/2012	10:06	Calcium	Total	Water	29000	ug/l	9 ft
RLE-1	7/22/2009	11:10	Calcium	Total	Water	28300	ug/l	9 ft
RLE-1	8/11/2009	11:10	Calcium	Total	Water	28200	ug/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	6/3/2009	12:05	Calcium	Total	Water	28100	ug/l	9 ft
RLE-1	06/04/2003	10:48	Calcium	Total	Water	34	mg/l	11 ft
RLE-1	04/15/2003	10:30	Calcium	Total	Water	32	mg/l	7 ft
RLE-1	10/15/2003	11:10	Calcium	Total	Water	29	mg/l	7 ft
RLE-1	08/07/2003	10:41	Calcium	Total	Water	25	mg/l	7 ft
RLE-1	07/23/2003	10:36	Calcium	Total	Water	24	mg/l	9 ft
DGP-01	9/11/2002	13:00	CALCIUM, Dissolved mg/l	Dissolved	Water	68	ug/l	
DGP-01	8/8/2002	12:45	CALCIUM, Dissolved mg/l	Dissolved	Water	62	ug/l	
DGLC-01	8/12/2002	15:30	CALCIUM, Dissolved mg/l	Dissolved	Water	59	ug/l	
DGLC-01	6/10/2002	9:00	CALCIUM, Dissolved mg/l	Dissolved	Water	58	ug/l	
DGP-01	6/11/2002	9:00	CALCIUM, Dissolved mg/l	Dissolved	Water	54	ug/l	
DGLC-01	9/11/2002	14:30	CALCIUM, Dissolved mg/l	Dissolved	Water	53	ug/l	
DGO-01	6/11/2002	10:45	CALCIUM, Dissolved mg/l	Dissolved	Water	18	ug/l	
DGP-01	9/11/2002	13:00	CALCIUM,Total mg/l	Total	Water	67	ug/l	
DGLC-01	8/12/2002	15:30	CALCIUM,Total mg/l	Total	Water	66	ug/l	
DGP-01	8/8/2002	12:45	CALCIUM,Total mg/l	Total	Water	63	ug/l	
DGLC-01	6/10/2002	9:00	CALCIUM,Total mg/l	Total	Water	63	ug/l	
DGP-01	6/11/2002	9:00	CALCIUM,Total mg/l	Total	Water	55	ug/l	
DGLC-01	9/11/2002	14:30	CALCIUM,Total mg/l	Total	Water	54	ug/l	
DGO-01	6/11/2002	10:45	CALCIUM,Total mg/l	Total	Water	30	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Carbon, organic	Total	Water	11.4	mg/l	
DGLC-01	8/22/2007	9:45	Carbon, organic	Total	Water	10.6	mg/l	
DGLC-BU-E1	9/5/2007	11:10	Carbon, organic	Total	Water	9.7	mg/l	
DGLC-BU-C1	9/5/2007	10:00	Carbon, organic	Total	Water	9.53	mg/l	
DGLC-01	9/26/2007	12:10	Carbon, organic	Total	Water	7.32	mg/l	
DGO-01	8/20/2007	12:20	Carbon, organic	Total	Water	6.66	mg/l	
DGPC-01	8/20/2007	11:00	Carbon, organic	Total	Water	6.22	mg/l	
DGP-01	9/25/2007	12:20	Carbon, organic	Total	Water	6.07	mg/l	
DGP-01	8/20/2007	11:40	Carbon, organic	Total	Water	5.83	mg/l	
DGPC-01	9/25/2007	13:40	Carbon, organic	Total	Water	5.77	mg/l	
DGP-01	7/18/2007	10:45	Carbon, organic	Total	Water	4.41	mg/l	
DGLC-01	7/16/2007	9:45	Carbon, organic	Total	Water	3.77	mg/l	
DGPC-01	6/12/2007	9:00	Carbon, organic	Total	Water	2.85	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGO-01	7/3/2007	12:00	Carbon, organic	Total	Water	2.72	mg/l	
DGLC-01	6/18/2007	14:15	Carbon, organic	Total	Water	2.54	mg/l	
RLE-3	07/23/2003	11:48	Carbon, Total Organic (Toc)		Sediment	0.6	%	15 ft
RLE-1	07/23/2003	10:36	Carbon, Total Organic (Toc)		Sediment	0.5	%	19 ft
DGO-01	6/11/2002	10:45	CARBON, TOTAL ORGANIC mg/l		Water	8.2	mg/l	
DGLC-01	8/12/2002	15:30	CARBON, TOTAL ORGANIC mg/l		Water	6.5	mg/l	
DGP-01	8/8/2002	12:45	CARBON, TOTAL ORGANIC mg/l		Water	5	mg/l	
DGLC-01	9/11/2002	14:30	CARBON, TOTAL ORGANIC mg/l		Water	5	mg/l	
DGLC-01	6/10/2002	9:00	CARBON, TOTAL ORGANIC mg/l		Water	4.5	mg/l	
DGP-01	9/11/2002	13:00	CARBON, TOTAL ORGANIC mg/l		Water	4.5	mg/l	
DGP-01	6/11/2002	9:00	CARBON, TOTAL ORGANIC mg/l		Water	3.6	mg/l	
DGLC-BU-E1	9/5/2007	11:10	Chloride	Total	Water	762	mg/l	
DGLC-BU-C1	9/5/2007	10:00	Chloride	Total	Water	708	mg/l	
DGLC-BU-E1	9/5/2007	11:10	Chloride	Total	Water	692	mg/l	
DGLC-BU-C2	9/5/2007	11:45	Chloride	Total	Water	680	mg/l	
DGLC-BU-C1	9/5/2007	10:00	Chloride	Total	Water	652	mg/l	
DGLC-01	9/26/2007	12:10	Chloride	Total	Water	636	mg/l	
DGLC-BU-C2	9/5/2007	11:45	Chloride	Total	Water	602	mg/l	
DGLC-01	8/22/2007	9:45	Chloride	Total	Water	493	mg/l	
DGLC-01	7/10/2012	8:29	Chloride	Total	Water	171	mg/l	
DGLC-01	7/16/2007	9:45	Chloride	Total	Water	65.8	mg/l	
DGLC-01	6/18/2007	14:15	Chloride	Total	Water	40.6	mg/l	
DGPC-01	6/12/2007	9:00	Chloride	Total	Water	29.6	mg/l	
DGO-01	7/3/2007	12:00	Chloride	Total	Water	27.6	mg/l	
DGLC-01	5/14/2012	9:30	Chloride	Total	Water	26.5	mg/l	
RLE-1	4/14/2009	11:28	Chloride	Total	Water	25.7	mg/l	18 ft
DGP-01	5/15/2012	11:29	Chloride	Total	Water	24.1	mg/l	
DGO-01	8/20/2007	12:20	Chloride	Total	Water	24.1	mg/l	
DGP-01	7/18/2007	10:45	Chloride	Total	Water	24	mg/l	
RLE-1	4/14/2009	11:18	Chloride	Total	Water	23.5	mg/l	9 ft
DGO-01	5/15/2012	10:45	Chloride	Total	Water	23.3	mg/l	
RLE-1	8/22/2012	10:26	Chloride	Total	Water	23	mg/l	9 ft
RLE-1	4/14/2009	11:08	Chloride	Total	Water	22.5	mg/l	1 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	7/18/2012	10:06	Chloride	Total	Water	21.6	mg/l	9 ft
DGP-01	8/20/2007	11:40	Chloride	Total	Water	21.1	mg/l	
RLE-1	8/11/2009	11:00	Chloride	Total	Water	21	mg/l	1 ft
RLE-1	6/11/2012	10:53	Chloride	Total	Water	21	mg/l	9 ft
RLE-1	8/11/2009	11:10	Chloride	Total	Water	20.9	mg/l	9 ft
RLE-1	7/22/2009	10:51	Chloride	Total	Water	20.3	mg/l	1 ft
RLE-1	7/22/2009	11:10	Chloride	Total	Water	20.3	mg/l	9 ft
RLE-1	10/14/2009	11:20	Chloride	Total	Water	19.7	mg/l	17 ft
RLE-1	10/14/2009	11:00	Chloride	Total	Water	19	mg/l	1 ft
RLE-1	4/17/2012	10:33	Chloride	Total	Water	18.8	mg/l	9 ft
RLE-1	10/14/2009	11:10	Chloride	Total	Water	18.7	mg/l	9 ft
RLE-1	8/11/2009	11:25	Chloride	Total	Water	17.9	mg/l	16 ft
DGPC-01	8/20/2007	11:00	Chloride	Total	Water	17.7	mg/l	
RLE-1	7/22/2009	10:59	Chloride	Total	Water	17.5	mg/l	18 ft
RLE-1	6/3/2009	11:40	Chloride	Total	Water	17.2	mg/l	17 ft
RLE-1	6/3/2009	11:30	Chloride	Total	Water	15.8	mg/l	1 ft
RLE-1	6/3/2009	12:05	Chloride	Total	Water	15	mg/l	9 ft
DGP-01	9/25/2007	12:20	Chloride	Total	Water	13.8	mg/l	
DGPC-01	9/25/2007	13:40	Chloride	Total	Water	13.1	mg/l	
DGP-01	9/17/2012	10:59	Chloride	Total	Water	9.55	mg/l	
DGLC-01	8/12/2002	15:30	CHLORIDE,Total mg/l	Total	Water	79.6	mg/l	
DGLC-01	9/11/2002	14:30	CHLORIDE,Total mg/l	Total	Water	60.3	mg/l	
DGLC-01	6/10/2002	9:00	CHLORIDE,Total mg/l	Total	Water	24.2	mg/l	
DGP-01	6/11/2002	9:00	CHLORIDE,Total mg/l	Total	Water	20.2	mg/l	
DGO-01	6/11/2002	10:45	CHLORIDE,Total mg/l	Total	Water	20	mg/l	
DGP-01	9/11/2002	13:00	CHLORIDE,Total mg/l	Total	Water	16.5	mg/l	
DGP-01	8/8/2002	12:45	CHLORIDE,Total mg/l	Total	Water	16.4	mg/l	
RLE-1	04/15/2003	10:30	Chlorophyll (a+b+c)	Filterable	Water	300	ug/l	6 ft
RLE-1	07/23/2003	10:36	Chlorophyll (a+b+c)	Filterable	Water	300	ug/l	6 ft
RLE-2	07/23/2003	10:36	Chlorophyll (a+b+c)	Filterable	Water	300	ug/l	5 ft
RLE-3	04/15/2003	11:20	Chlorophyll (a+b+c)	Filterable	Water	300	ug/l	6 ft
RLE-3	08/07/2003	11:38	Chlorophyll (a+b+c)	Filterable	Water	225	ug/l	5 ft
RLE-1	10/15/2003	11:10	Chlorophyll (a+b+c)	Filterable	Water	200	ug/l	4 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	08/07/2003	10:41	Chlorophyll (a+b+c)	Filterable	Water	200	ug/l	5 ft
RLE-1	06/04/2003	10:48	Chlorophyll (a+b+c)	Filterable	Water	200	ug/l	5 ft
RLE-2	10/15/2003	11:45	Chlorophyll (a+b+c)	Filterable	Water	200	ug/l	4 ft
RLE-2	04/15/2003	11:06	Chlorophyll (a+b+c)	Filterable	Water	200	ug/l	5 ft
RLE-2	08/07/2003	11:21	Chlorophyll (a+b+c)	Filterable	Water	200	ug/l	5 ft
RLE-2	06/04/2003	11:37	Chlorophyll (a+b+c)	Filterable	Water	200	ug/l	5 ft
RLE-3	07/23/2003	11:48	Chlorophyll (a+b+c)	Filterable	Water	200	ug/l	5 ft
RLE-3	06/04/2003	12:03	Chlorophyll (a+b+c)	Filterable	Water	200	ug/l	5 ft
RLE-3	10/15/2003	12:00	Chlorophyll (a+b+c)	Filterable	Water	100	ug/l	3 ft
DGP-01	9/11/2002	13:00	CHLOROPHYLL (A+B+C), Filterable	Filterable	Water	480	ug/l	
DGP-01	8/8/2002	12:45	CHLOROPHYLL (A+B+C), Filterable	Filterable	Water	370	ug/l	
DGLC-01	6/10/2002	9:00	CHLOROPHYLL (A+B+C),Filterable	Filterable	Water	325	ug/l	
DGLC-01	8/12/2002	15:30	CHLOROPHYLL (A+B+C), Filterable	Filterable	Water	210	ug/l	
DGLC-01	9/11/2002	14:30	CHLOROPHYLL (A+B+C), Filterable	Filterable	Water	210	ug/l	
DGP-01	6/11/2002	9:00	CHLOROPHYLL (A+B+C), Filterable	Filterable	Water	175	ug/l	
DGO-01	6/11/2002	10:45	CHLOROPHYLL (A+B+C), Filterable	Filterable	Water	50	ug/l	
RLE-1	7/22/2009	10:51	Chlorophyll a, corrected for pheophytin	Total	Water	88.6	ug/l	4 ft
RLE-3	07/23/2003	11:48	Chlorophyll a, corrected for pheophytin		Water	63.3	ug/l	5 ft
RLE-2	07/23/2003	10:36	Chlorophyll a, corrected for pheophytin		Water	59.4	ug/l	5 ft
RLE-1	07/23/2003	10:36	Chlorophyll a, corrected for pheophytin		Water	56.5	ug/l	6 ft
RLE-1	08/07/2003	10:41	Chlorophyll a, corrected for pheophytin		Water	30.6	ug/l	5 ft
DGO-01	8/20/2007	12:20	Chlorophyll a, corrected for pheophytin	Total	Water	26.3	ug/l	
DGLC-01	9/26/2007	12:10	Chlorophyll a, corrected for pheophytin	Total	Water	26.2	ug/l	
RLE-3	04/15/2003	11:20	Chlorophyll a, corrected for pheophytin		Water	25.8	ug/l	6 ft
RLE-3	08/07/2003	11:38	Chlorophyll a, corrected for pheophytin		Water	23.1	ug/l	5 ft
RLE-2	06/04/2003	11:37	Chlorophyll a, corrected for pheophytin		Water	21.5	ug/l	5 ft
RLE-1	10/15/2003	11:10	Chlorophyll a, corrected for pheophytin		Water	21.1	ug/l	4 ft
RLE-2	10/15/2003	11:45	Chlorophyll a, corrected for pheophytin		Water	20.5	ug/l	4 ft
RLE-3	10/15/2003	12:00	Chlorophyll a, corrected for pheophytin		Water	20.2	ug/l	3 ft
RLE-2	08/07/2003	11:21	Chlorophyll a, corrected for pheophytin		Water	19.2	ug/l	5 ft
RLE-3	06/04/2003	12:03	Chlorophyll a, corrected for pheophytin		Water	18.7	ug/l	5 ft
DGLC-01	8/22/2007	9:45	Chlorophyll a, corrected for pheophytin	Total	Water	17.5	ug/l	
RLE-1	06/04/2003	10:48	Chlorophyll a, corrected for pheophytin		Water	16.9	ug/l	5 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	4/14/2009	11:08	Chlorophyll a, corrected for pheophytin	Total	Water	15.3	ug/l	2 ft
RLE-2	04/15/2003	11:06	Chlorophyll a, corrected for pheophytin		Water	13.5	ug/l	5 ft
DGLC-01	7/16/2007	9:45	Chlorophyll a, corrected for pheophytin	Total	Water	11.9	ug/l	
DGP-01	9/25/2007	10:45	Chlorophyll a, corrected for pheophytin	Total	Water	11.4	ug/l	
DGP-01	7/9/2007	11:20	Chlorophyll a, corrected for pheophytin	Total	Water	11	ug/l	
RLE-1	04/15/2003	10:30	Chlorophyll a, corrected for pheophytin		Water	10.7	ug/l	6 ft
RLE-1	10/14/2009	11:00	Chlorophyll a, corrected for pheophytin	Total	Water	10.7	ug/l	4 ft
DGP-01	7/18/2007	10:45	Chlorophyll a, corrected for pheophytin	Total	Water	10	ug/l	
DGP-01	9/17/2007	10:45	Chlorophyll a, corrected for pheophytin	Total	Water	10	ug/l	
DGPC-01	8/20/2007	11:00	Chlorophyll a, corrected for pheophytin	Total	Water	9.88	ug/l	
DGP-01	7/16/2007	11:00	Chlorophyll a, corrected for pheophytin	Total	Water	6	ug/l	
RLE-1	6/3/2009	11:30	Chlorophyll a, corrected for pheophytin	Total	Water	5.94	ug/l	4 ft
DGP-01	8/20/2007	11:40	Chlorophyll a, corrected for pheophytin	Total	Water	5	ug/l	
DGPC-01	9/25/2007	13:40	Chlorophyll a, corrected for pheophytin	Total	Water	4.48	ug/l	
DGP-01	9/25/2007	12:20	Chlorophyll a, corrected for pheophytin	Total	Water	4.24	ug/l	
RLE-1	4/17/2012	10:32	Chlorophyll a, corrected for pheophytin	Total	Water	3.67	ug/l	3 ft
DGLC-01	5/14/2012	9:30	Chlorophyll a, corrected for pheophytin	Total	Water	1.87	ug/l	1 ft
DGLC-01	6/18/2007	14:15	Chlorophyll a, corrected for pheophytin	Total	Water	1.44	ug/l	
DGP-01	5/15/2012	11:29	Chlorophyll a, corrected for pheophytin	Total	Water	1.05	ug/l	1 ft
DGO-01	5/15/2012	10:45	Chlorophyll a, corrected for pheophytin	Total	Water	0.97	ug/l	1 ft
DGLC-01	9/11/2002	14:30	CHLOROPHYLL A, CORRECTED FOR PHEOPHYTIN ug/I		Water	30.8	ug/l	
DGO-01	6/11/2002	10:45	CHLOROPHYLL A, CORRECTED FOR PHEOPHYTIN ug/I		Water	26.2	ug/l	
DGLC-01	8/12/2002	15:30	CHLOROPHYLL A, CORRECTED FOR PHEOPHYTIN ug/I		Water	23.2	ug/l	
DGLC-01	6/10/2002	9:00	CHLOROPHYLL A, CORRECTED FOR PHEOPHYTIN ug/I		Water	18	ug/l	
DGP-01	8/8/2002	12:45	CHLOROPHYLL A, CORRECTED FOR PHEOPHYTIN ug/I		Water	10.6	ug/l	
DGP-01	9/11/2002	13:00	CHLOROPHYLL A, CORRECTED FOR PHEOPHYTIN ug/I		Water	3.71	ug/l	
DGP-01	6/11/2002	9:00	CHLOROPHYLL A, CORRECTED FOR PHEOPHYTIN ug/I		Water	3.43	ug/l	
RLE-1	7/22/2009	10:51	Chlorophyll a, uncorrected for pheophytin	Total	Water	94.3	ug/l	4 ft
RLE-3	07/23/2003	11:48	Chlorophyll a, uncorrected for pheophytin		Water	60.7	ug/l	5 ft
RLE-2	07/23/2003	10:36	Chlorophyll a, uncorrected for pheophytin		Water	56.8	ug/l	5 ft
RLE-1	07/23/2003	10:36	Chlorophyll a, uncorrected for pheophytin		Water	54	ug/l	6 ft
DGLC-01	9/26/2007	12:10	Chlorophyll a, uncorrected for pheophytin	Total	Water	30.2	ug/l	
RLE-1	08/07/2003	10:41	Chlorophyll a, uncorrected for pheophytin		Water	29.8	ug/l	5 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGO-01	8/20/2007	12:20	Chlorophyll a, uncorrected for pheophytin	Total	Water	28	ug/l	
DGLC-01	8/22/2007	9:45	Chlorophyll a, uncorrected for pheophytin	Total	Water	25.6	ug/l	
RLE-3	04/15/2003	11:20	Chlorophyll a, uncorrected for pheophytin		Water	25.3	ug/l	6 ft
RLE-3	08/07/2003	11:38	Chlorophyll a, uncorrected for pheophytin		Water	21.6	ug/l	5 ft
RLE-2	06/04/2003	11:37	Chlorophyll a, uncorrected for pheophytin		Water	21.3	ug/l	5 ft
RLE-1	10/15/2003	11:10	Chlorophyll a, uncorrected for pheophytin		Water	20.7	ug/l	4 ft
RLE-2	10/15/2003	11:45	Chlorophyll a, uncorrected for pheophytin		Water	19.3	ug/l	4 ft
RLE-3	06/04/2003	12:03	Chlorophyll a, uncorrected for pheophytin		Water	19.1	ug/l	5 ft
RLE-1	06/04/2003	10:48	Chlorophyll a, uncorrected for pheophytin		Water	17.6	ug/l	5 ft
RLE-3	10/15/2003	12:00	Chlorophyll a, uncorrected for pheophytin		Water	17.3	ug/l	3 ft
RLE-2	08/07/2003	11:21	Chlorophyll a, uncorrected for pheophytin		Water	17.2	ug/l	5 ft
RLE-1	4/14/2009	11:08	Chlorophyll a, uncorrected for pheophytin	Total	Water	15.3	ug/l	2 ft
RLE-2	04/15/2003	11:06	Chlorophyll a, uncorrected for pheophytin		Water	12.7	ug/l	5 ft
DGPC-01	8/20/2007	11:00	Chlorophyll a, uncorrected for pheophytin	Total	Water	12.2	ug/l	
DGP-01	9/25/2007	10:45	Chlorophyll a, uncorrected for pheophytin	Total	Water	11.5	ug/l	
RLE-1	10/14/2009	11:00	Chlorophyll a, uncorrected for pheophytin	Total	Water	10.9	ug/l	4 ft
RLE-1	04/15/2003	10:30	Chlorophyll a, uncorrected for pheophytin		Water	10.8	ug/l	6 ft
DGLC-01	7/16/2007	9:45	Chlorophyll a, uncorrected for pheophytin	Total	Water	10.8	ug/l	
RLE-1	6/3/2009	11:30	Chlorophyll a, uncorrected for pheophytin	Total	Water	6.23	ug/l	4 ft
DGPC-01	9/25/2007	13:40	Chlorophyll a, uncorrected for pheophytin	Total	Water	5.3	ug/l	
DGP-01	9/25/2007	12:20	Chlorophyll a, uncorrected for pheophytin	Total	Water	4.29	ug/l	
RLE-1	4/17/2012	10:32	Chlorophyll a, uncorrected for pheophytin	Total	Water	4.1	ug/l	3 ft
DGLC-01	5/14/2012	9:30	Chlorophyll a, uncorrected for pheophytin	Total	Water	2.98	ug/l	1 ft
DGLC-01	6/18/2007	14:15	Chlorophyll a, uncorrected for pheophytin	Total	Water	1.68	ug/l	
DGO-01	5/15/2012	10:45	Chlorophyll a, uncorrected for pheophytin	Total	Water	0.97	ug/l	1 ft
DGLC-01	9/11/2002	14:30	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN, Fixed	Fixed	Water	33.1	ug/l	
DGLC-01	8/12/2002	15:30	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN, Fixed	Fixed	Water	25.1	ug/l	
DGO-01	6/11/2002	10:45	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN, Fixed	Fixed	Water	22.3	ug/l	
DGLC-01	6/10/2002	9:00	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN, Fixed	Fixed	Water	18.2	ug/l	
DGP-01	8/8/2002	12:45	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN, Fixed	Fixed	Water	10.4	ug/l	
DGP-01	6/11/2002	9:00	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN, Fixed	Fixed	Water	3.61	ug/l	
DGP-01	9/11/2002	13:00	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN, Fixed	Fixed	Water	3.4	ug/l	
RLE-1	7/22/2009	10:51	Chlorophyll-b	Total	Water	22.6	ug/l	4 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	7/9/2007	11:20	Chlorophyll-b	Total	Water	11	ug/l	
RLE-1	08/07/2003	10:41	Chlorophyll-b	Total	Water	7.84	ug/l	5 ft
RLE-3	08/07/2003	11:38	Chlorophyll-b	Total	Water	4.63	ug/l	5 ft
DGP-01	9/17/2007	10:45	Chlorophyll-b	Total	Water	4	ug/l	
RLE-2	06/04/2003	11:37	Chlorophyll-b	Total	Water	3.47	ug/l	5 ft
RLE-3	06/04/2003	12:03	Chlorophyll-b	Total	Water	3.25	ug/l	5 ft
RLE-2	08/07/2003	11:21	Chlorophyll-b	Total	Water	3.14	ug/l	5 ft
RLE-1	06/04/2003	10:48	Chlorophyll-b	Total	Water	3	ug/l	5 ft
DGLC-01	8/22/2007	9:45	Chlorophyll-b	Total	Water	2.59	ug/l	
RLE-1	07/23/2003	10:36	Chlorophyll-b	Total	Water	2.47	ug/l	6 ft
DGPC-01	8/20/2007	11:00	Chlorophyll-b	Total	Water	2.34	ug/l	
RLE-2	10/15/2003	11:45	Chlorophyll-b	Total	Water	1.93	ug/l	4 ft
RLE-1	10/15/2003	11:10	Chlorophyll-b	Total	Water	1.76	ug/l	4 ft
DGO-01	8/20/2007	12:20	Chlorophyll-b	Total	Water	1.57	ug/l	
RLE-2	07/23/2003	10:36	Chlorophyll-b	Total	Water	1.32	ug/l	5 ft
DGLC-01	9/26/2007	12:10	Chlorophyll-b	Total	Water	1.26	ug/l	
RLE-1	10/14/2009	11:00	Chlorophyll-b	Total	Water	1.14	ug/l	4 ft
DGLC-01	9/11/2002	14:30	CHLOROPHYLL-B		Water	3.14	ug/l	
DGLC-01	8/12/2002	15:30	CHLOROPHYLL-B		Water	2.52	ug/l	
DGP-01	8/8/2002	12:45	CHLOROPHYLL-B		Water	1	ug/l	
DGLC-01	6/10/2002	9:00	CHLOROPHYLL-B		Water	1	ug/l	
DGP-01	6/11/2002	9:00	CHLOROPHYLL-B		Water	1	ug/l	
DGO-01	6/11/2002	10:45	CHLOROPHYLL-B		Water	1	ug/l	
DGP-01	9/11/2002	13:00	CHLOROPHYLL-B		Water	1	ug/l	
DGLC-01	7/16/2007	9:45	Chlorophyll-c	Total	Water	8.09	ug/l	
DGP-01	7/9/2007	11:20	Chlorophyll-c	Total	Water	6	ug/l	
RLE-1	7/22/2009	10:51	Chlorophyll-c	Total	Water	4.61	ug/l	4 ft
DGP-01	7/16/2007	11:00	Chlorophyll-c	Total	Water	4	ug/l	
DGP-01	7/18/2007	10:45	Chlorophyll-c	Total	Water	4	ug/l	
RLE-3	07/23/2003	11:48	Chlorophyll-c	Total	Water	3.83	ug/l	5 ft
RLE-3	04/15/2003	11:20	Chlorophyll-c	Total	Water	3.29	ug/l	6 ft
DGLC-01	9/26/2007	12:10	Chlorophyll-c	Total	Water	2.87	ug/l	
RLE-1	4/14/2009	11:08	Chlorophyll-c	Total	Water	2.53	ug/l	2 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-2	07/23/2003	10:36	Chlorophyll-c	Total	Water	1.68	ug/l	5 ft
DGO-01	8/20/2007	12:20	Chlorophyll-c	Total	Water	1.68	ug/l	
RLE-1	10/14/2009	11:00	Chlorophyll-c	Total	Water	1.57	ug/l	4 ft
RLE-1	07/23/2003	10:36	Chlorophyll-c	Total	Water	1.38	ug/l	6 ft
RLE-1	04/15/2003	10:30	Chlorophyll-c	Total	Water	1.34	ug/l	6 ft
RLE-1	08/07/2003	10:41	Chlorophyll-c	Total	Water	1.2	ug/l	5 ft
RLE-2	04/15/2003	11:06	Chlorophyll-c	Total	Water	1.2	ug/l	5 ft
RLE-1	6/3/2009	11:30	Chlorophyll-c	Total	Water	0.71	ug/l	4 ft
DGLC-01	9/11/2002	14:30	CHLOROPHYLL-C		Water	2.36	ug/l	
DGLC-01	8/12/2002	15:30	CHLOROPHYLL-C		Water	1	ug/l	
DGP-01	8/8/2002	12:45	CHLOROPHYLL-C		Water	1	ug/l	
DGLC-01	6/10/2002	9:00	CHLOROPHYLL-C		Water	1	ug/l	
DGP-01	6/11/2002	9:00	CHLOROPHYLL-C		Water	1	ug/l	
DGO-01	6/11/2002	10:45	CHLOROPHYLL-C		Water	1	ug/l	
DGP-01	9/11/2002	13:00	CHLOROPHYLL-C		Water	1	ug/l	
RLE-1	07/23/2003	10:36	Chromium	Total	Sediment	23	mg/kg	19 ft
RLE-3	07/23/2003	11:48	Chromium	Total	Sediment	20	mg/kg	15 ft
RLE-1	7/22/2009	10:51	Chromium	Total	Sediment	16.6	mg/kg	20 ft
DGO-01	7/3/2007	12:00	Chromium	Total	Water	2.9	ug/l	
RLE-1	7/22/2009	11:10	Chromium	Total	Water	2.26	ug/l	9 ft
DGLC-01	9/18/2012	10:14	Chromium	Total	Water	2.24	ug/l	
RLE-1	6/3/2009	12:05	Chromium	Total	Water	2.17	ug/l	9 ft
RLE-1	4/14/2009	11:18	Chromium	Total	Water	1.59	ug/l	9 ft
DGLC-01	9/26/2007	12:10	Chromium	Total	Water	1.33	ug/l	
RLE-1	10/14/2009	11:10	Chromium	Total	Water	1.24	ug/l	9 ft
DGPC-01	9/25/2007	13:40	Chromium	Total	Water	1.1	ug/l	
DGLC-01	9/26/2007	12:10	Chromium	Dissolved	Water	0.94	ug/l	
DGP-01	9/25/2007	12:20	Chromium	Total	Water	0.93	ug/l	
RLE-1	7/18/2012	10:06	Chromium	Total	Water	0.86	ug/l	9 ft
RLE-1	8/11/2009	11:10	Chromium	Total	Water	0.82	ug/l	9 ft
RLE-1	6/11/2012	10:53	Chromium	Total	Water	0.77	ug/l	9 ft
DGP-01	9/17/2012	10:59	Chromium	Total	Water	0.68	ug/l	
DGPC-01	9/25/2007	13:40	Chromium	Dissolved	Water	0.57	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	5/14/2012	9:30	Chromium	Total	Water	0.57	ug/l	
RLE-1	8/22/2012	10:26	Chromium	Total	Water	0.51	ug/l	9 ft
DGLC-01	8/12/2002	15:30	CHROMIUM, Dissolved ug/l	Dissolved	Water	5	ug/l	
DGP-01	8/8/2002	12:45	CHROMIUM, Dissolved ug/l	Dissolved	Water	5	ug/l	
DGLC-01	6/10/2002	9:00	CHROMIUM, Dissolved ug/l	Dissolved	Water	5	ug/l	
DGP-01	6/11/2002	9:00	CHROMIUM, Dissolved ug/l	Dissolved	Water	5	ug/l	
DGO-01	6/11/2002	10:45	CHROMIUM, Dissolved ug/l	Dissolved	Water	5	ug/l	
DGP-01	9/11/2002	13:00	CHROMIUM, Dissolved ug/l	Dissolved	Water	5	ug/l	
DGLC-01	9/11/2002	14:30	CHROMIUM, Dissolved ug/l	Dissolved	Water	5	ug/l	
DGO-01	6/11/2002	10:45	CHROMIUM,Total ug/l	Total	Water	34	ug/l	
DGP-01	9/11/2002	13:00	CHROMIUM,Total ug/l	Total	Water	13	ug/l	
DGLC-01	9/11/2002	14:30	CHROMIUM,Total ug/l	Total	Water	7	ug/l	
DGLC-01	8/12/2002	15:30	CHROMIUM,Total ug/l	Total	Water	5	ug/l	
DGP-01	8/8/2002	12:45	CHROMIUM,Total ug/l	Total	Water	5	ug/l	
DGLC-01	6/10/2002	9:00	CHROMIUM,Total ug/l	Total	Water	5	ug/l	
DGP-01	6/11/2002	9:00	CHROMIUM,Total ug/l	Total	Water	5	ug/l	
DGLC-01	5/14/2012	9:30	Cobalt	Dissolved	Water	3.26	ug/l	
DGLC-01	5/14/2012	9:30	Cobalt	Total	Water	3.18	ug/l	
DGLC-01	9/18/2012	10:14	Cobalt	Total	Water	1.51	ug/l	
DGPC-01	9/25/2007	13:40	Cobalt	Total	Water	1.2	ug/l	
RLE-1	6/11/2012	10:53	Cobalt	Total	Water	0.93	ug/l	9 ft
DGP-01	5/15/2012	11:29	Cobalt	Total	Water	0.91	ug/l	
DGP-01	9/25/2007	12:20	Cobalt	Total	Water	0.89	ug/l	
RLE-1	4/14/2009	11:18	Cobalt	Total	Water	0.86	ug/l	9 ft
RLE-1	7/18/2012	10:06	Cobalt	Total	Water	0.79	ug/l	9 ft
RLE-1	8/22/2012	10:26	Cobalt	Total	Water	0.79	ug/l	9 ft
DGO-01	5/15/2012	10:45	Cobalt	Dissolved	Water	0.77	ug/l	
DGPC-01	9/25/2007	13:40	Cobalt	Dissolved	Water	0.77	ug/l	
DGLC-01	9/26/2007	12:10	Cobalt	Total	Water	0.68	ug/l	
DGP-01	5/15/2012	11:29	Cobalt	Dissolved	Water	0.67	ug/l	
DGP-01	9/25/2007	12:20	Cobalt	Dissolved	Water	0.6	ug/l	
RLE-1	6/3/2009	12:05	Cobalt	Total	Water	0.57	ug/l	9 ft
DGLC-01	9/18/2012	10:14	Cobalt	Dissolved	Water	0.55	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	9/26/2007	12:10	Cobalt	Dissolved	Water	0.44	ug/l	
DGP-01	9/17/2012	10:59	Cobalt	Dissolved	Water	0.35	ug/l	
DGP-01	9/17/2012	10:59	Cobalt	Total	Water	0.33	ug/l	
RLE-1	8/11/2009	11:10	Cobalt	Total	Water	0.28	ug/l	9 ft
DGLC-01	8/12/2002	15:30	COBALT, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGP-01	8/8/2002	12:45	COBALT, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGLC-01	6/10/2002	9:00	COBALT, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGP-01	6/11/2002	9:00	COBALT, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGO-01	6/11/2002	10:45	COBALT, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGP-01	9/11/2002	13:00	COBALT, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGLC-01	9/11/2002	14:30	COBALT, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGLC-01	8/12/2002	15:30	COBALT,Total ug/l	Total	Water	10	ug/l	
DGP-01	8/8/2002	12:45	COBALT,Total ug/l	Total	Water	10	ug/l	
DGLC-01	6/10/2002	9:00	COBALT,Total ug/l	Total	Water	10	ug/l	
DGP-01	6/11/2002	9:00	COBALT,Total ug/l	Total	Water	10	ug/l	
DGO-01	6/11/2002	10:45	COBALT,Total ug/l	Total	Water	10	ug/l	
DGP-01	9/11/2002	13:00	COBALT,Total ug/l	Total	Water	10	ug/l	
DGLC-01	9/11/2002	14:30	COBALT,Total ug/l	Total	Water	10	ug/l	
DGLC-01	8/12/2002	15:30	CONDUCTANCE, SPECIFIC umho/cm		Water	835	umho/cm	
DGLC-01	9/11/2002	14:30	CONDUCTANCE, SPECIFIC umho/cm		Water	718	umho/cm	
DGP-01	9/11/2002	13:00	CONDUCTANCE, SPECIFIC umho/cm		Water	570	umho/cm	
DGLC-01	6/10/2002	9:00	CONDUCTANCE, SPECIFIC umho/cm		Water	548	umho/cm	
DGP-01	8/8/2002	12:45	CONDUCTANCE, SPECIFIC umho/cm		Water	523	umho/cm	
DGP-01	6/11/2002	9:00	CONDUCTANCE, SPECIFIC umho/cm		Water	487	umho/cm	
DGO-01	6/11/2002	10:45	CONDUCTANCE, SPECIFIC umho/cm		Water	180	umho/cm	
RLE-1	7/22/2009	10:51	Copper	Total	Sediment	274	mg/kg	20 ft
RLE-1	07/23/2003	10:36	Copper	Total	Sediment	230	mg/kg	19 ft
RLE-3	07/23/2003	11:48	Copper	Total	Sediment	180	mg/kg	15 ft
RLE-1	10/15/2003	11:10	Copper	Total	Water	23	ug/l	7 ft
RLE-1	7/22/2009	11:10	Copper	Total	Water	22.1	ug/l	9 ft
RLE-1	08/07/2003	10:41	Copper	Total	Water	19	ug/l	7 ft
RLE-1	06/04/2003	10:48	Copper	Total	Water	16	ug/l	11 ft
RLE-1	4/14/2009	11:18	Copper	Total	Water	13.3	ug/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	8/11/2009	11:10	Copper	Total	Water	11.5	ug/l	9 ft
RLE-1	7/18/2012	10:06	Copper	Total	Water	11.2	ug/l	9 ft
DGLC-01	9/18/2012	10:14	Copper	Total	Water	11.2	ug/l	
RLE-1	8/22/2012	10:26	Copper	Total	Water	10.6	ug/l	9 ft
RLE-1	6/11/2012	10:53	Copper	Total	Water	10.5	ug/l	9 ft
DGLC-01	9/18/2012	10:14	Copper	Dissolved	Water	9.65	ug/l	
DGLC-01	9/26/2007	12:10	Copper	Total	Water	9.52	ug/l	
DGLC-01	9/26/2007	12:10	Copper	Dissolved	Water	9.34	ug/l	
RLE-1	4/17/2012	10:33	Copper	Total	Water	9.17	ug/l	9 ft
DGLC-BU-E1	9/5/2007	11:10	Copper	Total	Water	8.2	ug/l	
DGLC-BU-C1	9/5/2007	10:00	Copper	Total	Water	7.9	ug/l	
RLE-1	6/3/2009	12:05	Copper	Total	Water	6.88	ug/l	9 ft
RLE-1	10/14/2009	11:10	Copper	Total	Water	6.83	ug/l	9 ft
DGLC-BU-C2	9/5/2007	11:45	Copper	Total	Water	6	ug/l	
DGLC-01	8/22/2007	9:45	Copper	Total	Water	4.6	ug/l	
DGP-01	9/17/2012	10:59	Copper	Total	Water	3.34	ug/l	
DGP-01	9/17/2012	10:59	Copper	Dissolved	Water	3.07	ug/l	
DGP-01	9/25/2007	12:20	Copper	Total	Water	1.8	ug/l	
DGLC-01	5/14/2012	9:30	Copper	Total	Water	1.59	ug/l	
DGPC-01	9/25/2007	13:40	Copper	Total	Water	1.4	ug/l	
DGP-01	9/25/2007	12:20	Copper	Dissolved	Water	1.2	ug/l	
DGLC-01	5/14/2012	9:30	Copper	Dissolved	Water	0.82	ug/l	
DGPC-01	9/25/2007	13:40	Copper	Dissolved	Water	0.76	ug/l	
DGLC-01	8/12/2002	15:30	COPPER, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGP-01	8/8/2002	12:45	COPPER, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGLC-01	6/10/2002	9:00	COPPER, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGP-01	6/11/2002	9:00	COPPER, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGO-01	6/11/2002	10:45	COPPER, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGP-01	9/11/2002	13:00	COPPER, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGLC-01	9/11/2002	14:30	COPPER, Dissolved ug/l	Dissolved	Water	10	ug/l	
DGO-01	6/11/2002	10:45	COPPER,Total ug/l	Total	Water	35	ug/l	
DGLC-01	8/12/2002	15:30	COPPER,Total ug/l	Total	Water	10	ug/l	
DGP-01	8/8/2002	12:45	COPPER,Total ug/l	Total	Water	10	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	6/10/2002	9:00	COPPER,Total ug/l	Total	Water	10	ug/l	
DGP-01	6/11/2002	9:00	COPPER,Total ug/l	Total	Water	10	ug/l	
DGP-01	9/11/2002	13:00	COPPER,Total ug/l	Total	Water	10	ug/l	
DGLC-01	9/11/2002	14:30	COPPER,Total ug/l	Total	Water	10	ug/l	
RLE-1	4/17/2012	10:33	Cyanazine	Total	Water	0.1	ug/l	9 ft
DGO-01	7/3/2007	12:00	Cyanide	Weak Acid Diss	Water	0.016	mg/l	
DGPC-01	6/12/2007	9:00	Cyanide	Weak Acid Diss	Water	0.006	mg/l	
DGO-01	8/20/2007	12:20	Cyanide	Weak Acid Diss	Water	0.006	mg/l	
DGLC-01	9/18/2012	10:14	Cyanide	Total	Water	0.003	mg/l	
DGP-01	9/17/2012	10:59	Cyanide	Total	Water	0.002	mg/l	
DGLC-01	6/10/2002	9:00	CYANIDE		Water	0.01	mg/l	
DGP-01	6/11/2002	9:00	CYANIDE		Water	0.01	mg/l	
DGO-01	6/11/2002	10:45	CYANIDE		Water	0.01	mg/l	
RLE-1	7/22/2009	10:51	DDT, p,p'-	Total	Sediment	0.24	ug/kg	20 ft
RLE-1	7/22/2009	11:10	DDT, p,p'-	Total	Water	0.0022	ug/l	9 ft
RLE-1	07/23/2003	10:36	Depth		Sediment	19	ft	19 ft
RLE-1	07/23/2003	10:36	Depth		Sediment	19	ft	19 ft
RLE-1	06/04/2003	10:48	Depth		Water	18	ft	18 ft
RLE-1	07/23/2003	10:36	Depth		Water	17	ft	17 ft
RLE-3	07/23/2003	11:48	Depth		Sediment	15	ft	15 ft
RLE-3	07/23/2003	11:48	Depth		Sediment	15	ft	15 ft
RLE-1	10/15/2003	11:10	Depth		Water	14	ft	14 ft
RLE-1	08/07/2003	10:41	Depth		Water	11	ft	11 ft
RLE-1	06/04/2003	10:48	Depth		Water	11	ft	11 ft
RLE-1	06/04/2003	10:48	Depth		Water	11	ft	11 ft
RLE-1	06/04/2003	10:48	Depth		Water	11	ft	11 ft
RLE-1	04/15/2003	10:30	Depth		Water	11	ft	11 ft
RLE-1	07/23/2003	10:36	Depth		Water	9	ft	9 ft
RLE-1	07/23/2003	10:36	Depth		Water	9	ft	9 ft
RLE-1	07/23/2003	10:36	Depth		Water	9	ft	9 ft
RLE-1	04/15/2003	10:30	Depth		Water	7	ft	7 ft
RLE-1	10/15/2003	11:10	Depth		Water	7	ft	7 ft
RLE-1	10/15/2003	11:10	Depth		Water	7	ft	7 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	10/15/2003	11:10	Depth		Water	7	ft	7 ft
RLE-1	08/07/2003	10:41	Depth		Water	7	ft	7 ft
RLE-1	08/07/2003	10:41	Depth		Water	7	ft	7 ft
RLE-1	08/07/2003	10:41	Depth		Water	7	ft	7 ft
RLE-1	04/15/2003	10:30	Depth		Water	7	ft	7 ft
RLE-1	04/15/2003	10:30	Depth		Water	6	ft	6 ft
RLE-1	07/23/2003	10:36	Depth		Water	6	ft	6 ft
RLE-3	04/15/2003	11:20	Depth		Water	6	ft	6 ft
RLE-1	08/07/2003	10:41	Depth		Water	5	ft	5 ft
RLE-1	06/04/2003	10:48	Depth		Water	5	ft	5 ft
RLE-2	04/15/2003	11:06	Depth		Water	5	ft	5 ft
RLE-2	08/07/2003	11:21	Depth		Water	5	ft	5 ft
RLE-2	07/23/2003	10:36	Depth		Water	5	ft	5 ft
RLE-2	06/04/2003	11:37	Depth		Water	5	ft	5 ft
RLE-3	08/07/2003	11:38	Depth		Water	5	ft	5 ft
RLE-3	07/23/2003	11:48	Depth		Water	5	ft	5 ft
RLE-3	06/04/2003	12:03	Depth		Water	5	ft	5 ft
RLE-1	10/15/2003	11:10	Depth		Water	4	ft	4 ft
RLE-2	10/15/2003	11:45	Depth		Water	4	ft	4 ft
RLE-3	10/15/2003	12:00	Depth		Water	3	ft	3 ft
RLE-1	10/15/2003	11:10	Depth		Water	1	ft	1 ft
RLE-1	08/07/2003	10:41	Depth		Water	1	ft	1 ft
RLE-1	07/23/2003	10:36	Depth		Water	1	ft	1 ft
RLE-1	06/04/2003	10:48	Depth		Water	1	ft	1 ft
RLE-1	04/15/2003	10:30	Depth		Water	1	ft	1 ft
RLE-2	10/15/2003	11:45	Depth		Water	1	ft	1 ft
RLE-2	08/07/2003	11:21	Depth		Water	1	ft	1 ft
RLE-2	07/23/2003	11:28	Depth		Water	1	ft	1 ft
RLE-2	06/04/2003	11:37	Depth		Water	1	ft	1 ft
RLE-2	04/15/2003	11:06	Depth		Water	1	ft	1 ft
RLE-3	10/15/2003	12:00	Depth		Water	1	ft	1 ft
RLE-3	08/07/2003	11:38	Depth		Water	1	ft	1 ft
RLE-3	07/23/2003	11:48	Depth		Water	1	ft	1 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-3	06/04/2003	12:03	Depth		Water	1	ft	1 ft
RLE-3	04/15/2003	11:20	Depth		Water	1	ft	1 ft
DGLC-01	8/12/2002	15:30	DEPTH ft		Water	1	ft	
DGP-01	8/8/2002	12:45	DEPTH ft		Water	1	ft	
DGLC-01	6/10/2002	9:00	DEPTH ft		Water	1	ft	
DGP-01	6/11/2002	9:00	DEPTH ft		Water	1	ft	
DGO-01	6/11/2002	10:45	DEPTH ft		Water	1	ft	
DGP-01	9/11/2002	13:00	DEPTH ft		Water	1	ft	
DGLC-01	9/11/2002	14:30	DEPTH ft		Water	1	ft	
RLE-1	06/04/2003	10:48	Depth, bottom		Water	20	ft	1 ft
RLE-1	06/04/2003	10:48	Depth, bottom		Water	20	ft	11 ft
RLE-1	06/04/2003	10:48	Depth, bottom		Water	20	ft	11 ft
RLE-1	06/04/2003	10:48	Depth, bottom		Water	20	ft	11 ft
RLE-1	06/04/2003	10:48	Depth, bottom		Water	20	ft	18 ft
RLE-1	07/23/2003	10:36	Depth, bottom		Water	19	ft	1 ft
RLE-1	07/23/2003	10:36	Depth, bottom		Water	19	ft	17 ft
RLE-1	07/23/2003	10:36	Depth, bottom		Water	19	ft	9 ft
RLE-1	07/23/2003	10:36	Depth, bottom		Water	19	ft	9 ft
RLE-1	07/23/2003	10:36	Depth, bottom		Water	19	ft	9 ft
RLE-1	10/15/2003	11:10	Depth, bottom		Water	16	ft	1 ft
RLE-1	10/15/2003	11:10	Depth, bottom		Water	16	ft	14 ft
RLE-1	10/15/2003	11:10	Depth, bottom		Water	16	ft	7 ft
RLE-1	10/15/2003	11:10	Depth, bottom		Water	16	ft	7 ft
RLE-1	10/15/2003	11:10	Depth, bottom		Water	16	ft	7 ft
RLE-3	07/23/2003	11:48	Depth, bottom		Water	15	ft	1 ft
RLE-2	06/04/2003	11:37	Depth, bottom		Water	14	ft	1 ft
RLE-1	08/07/2003	10:41	Depth, bottom		Water	13	ft	1 ft
RLE-1	04/15/2003	10:30	Depth, bottom		Water	13	ft	1 ft
RLE-1	08/07/2003	10:41	Depth, bottom		Water	13	ft	11 ft
RLE-1	04/15/2003	10:30	Depth, bottom		Water	13	ft	11 ft
RLE-1	04/15/2003	10:30	Depth, bottom		Water	13	ft	7 ft
RLE-1	08/07/2003	10:41	Depth, bottom		Water	13	ft	7 ft
RLE-1	08/07/2003	10:41	Depth, bottom		Water	13	ft	7 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	08/07/2003	10:41	Depth, bottom		Water	13	ft	7 ft
RLE-1	04/15/2003	10:30	Depth, bottom		Water	13	ft	7 ft
RLE-2	07/23/2003	11:28	Depth, bottom		Water	13	ft	1 ft
RLE-2	10/15/2003	11:45	Depth, bottom		Water	12	ft	1 ft
RLE-2	08/07/2003	11:21	Depth, bottom		Water	11	ft	1 ft
RLE-2	04/15/2003	11:06	Depth, bottom		Water	11	ft	1 ft
RLE-3	10/15/2003	12:00	Depth, bottom		Water	10	ft	1 ft
RLE-3	06/04/2003	12:03	Depth, bottom		Water	10	ft	1 ft
RLE-3	08/07/2003	11:38	Depth, bottom		Water	8	ft	1 ft
RLE-3	04/15/2003	11:20	Depth, bottom		Water	8	ft	1 ft
RLE-1	04/15/2003	10:30	Depth, Secchi Disk Depth		Water	36	in	1 ft
RLE-3	04/15/2003	11:20	Depth, Secchi Disk Depth		Water	36	in	1 ft
RLE-1	07/23/2003	10:36	Depth, Secchi Disk Depth		Water	32	in	1 ft
RLE-1	08/07/2003	10:41	Depth, Secchi Disk Depth		Water	30	in	1 ft
RLE-2	08/07/2003	11:21	Depth, Secchi Disk Depth		Water	30	in	1 ft
RLE-2	07/23/2003	11:28	Depth, Secchi Disk Depth		Water	30	in	1 ft
RLE-3	08/07/2003	11:38	Depth, Secchi Disk Depth		Water	30	in	1 ft
RLE-2	04/15/2003	11:06	Depth, Secchi Disk Depth		Water	28	in	1 ft
RLE-3	07/23/2003	11:48	Depth, Secchi Disk Depth		Water	28	in	1 ft
RLE-2	06/04/2003	11:37	Depth, Secchi Disk Depth		Water	26	in	1 ft
RLE-1	06/04/2003	10:48	Depth, Secchi Disk Depth		Water	25	in	1 ft
RLE-3	06/04/2003	12:03	Depth, Secchi Disk Depth		Water	25	in	1 ft
RLE-2	10/15/2003	11:45	Depth, Secchi Disk Depth		Water	20	in	1 ft
RLE-1	10/15/2003	11:10	Depth, Secchi Disk Depth		Water	19	in	1 ft
RLE-3	10/15/2003	12:00	Depth, Secchi Disk Depth		Water	18	in	1 ft
RLE-1	07/23/2003	10:36	Diazinon		Water	0.48	ug/l	9 ft
RLE-1	08/07/2003	10:41	Diazinon		Water	0.25	ug/l	7 ft
RLE-1	10/15/2003	11:10	Diazinon		Water	0.05	ug/l	7 ft
RLE-1	7/22/2009	11:10	Dicamba	Total	Water	0.22	ug/l	9 ft
RLE-1	8/11/2009	11:10	Dicamba	Total	Water	0.16	ug/l	9 ft
RLE-1	07/23/2003	10:36	Dieldrin		Sediment	1.2	ug/kg	19 ft
RLE-3	07/23/2003	11:48	Dieldrin		Sediment	1.2	ug/kg	15 ft
RLE-1	7/22/2009	10:51	Dieldrin	Total	Sediment	0.43	ug/kg	20 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	6/3/2009	12:05	Dieldrin	Total	Water	0.0025	ug/l	9 ft
DGLC-BU-C1	9/5/2007	10:00	Dissolved oxygen (DO)		Water	14.58	mg/l	
DGLC-BU-C2	9/5/2007	11:45	Dissolved oxygen (DO)		Water	14.18	mg/l	
DGLC-01	6/18/2007	14:15	Dissolved oxygen (DO)		Water	12.3	mg/l	
DGLC-01	9/26/2007	12:10	Dissolved oxygen (DO)		Water	11.42	mg/l	
DGLC-01	8/22/2007	9:45	Dissolved oxygen (DO)		Water	10.94	mg/l	
DGO-01	5/15/2012	10:45	Dissolved oxygen (DO)		Water	10.6	mg/l	
DGLC-01	5/14/2012	9:30	Dissolved oxygen (DO)		Water	9.9	mg/l	
DGLC-01	9/18/2012	10:15	Dissolved oxygen (DO)		Water	9.3	mg/l	
DGP-01	5/15/2012	11:30	Dissolved oxygen (DO)		Water	9.1	mg/l	
DGPC-01	6/12/2007	9:00	Dissolved oxygen (DO)		Water	8.29	mg/l	
DGO-01	7/3/2007	12:00	Dissolved oxygen (DO)		Water	8.1	mg/l	
DGLC-BU-E1	9/5/2007	11:10	Dissolved oxygen (DO)		Water	6.9	mg/l	
DGP-01	7/18/2007	10:45	Dissolved oxygen (DO)		Water	6.79	mg/l	
DGLC-01	7/16/2007	9:45	Dissolved oxygen (DO)		Water	6.49	mg/l	
DGP-01	9/17/2012	11:00	Dissolved oxygen (DO)		Water	5.8	mg/l	
DGLC-01	7/10/2012	8:30	Dissolved oxygen (DO)		Water	5.73	mg/l	
DGP-01	8/20/2007	11:40	Dissolved oxygen (DO)		Water	4.1	mg/l	
DGPC-01	8/20/2007	11:00	Dissolved oxygen (DO)		Water	3.36	mg/l	
DGO-01	8/20/2007	12:20	Dissolved oxygen (DO)		Water	2.63	mg/l	
DGPC-01	9/25/2007	13:40	Dissolved oxygen (DO)		Water	1.75	mg/l	
DGP-01	9/25/2007	12:20	Dissolved oxygen (DO)		Water	1.5	mg/l	
DGLC-01	9/11/2002	14:30	DISSOLVED OXYGEN (DO) mg/l		Water	11	mg/l	
DGP-01	8/8/2002	12:45	DISSOLVED OXYGEN (DO) mg/l		Water	7.8	mg/l	
DGP-01	9/11/2002	13:00	DISSOLVED OXYGEN (DO) mg/l		Water	7.8	mg/l	
DGP-01	6/11/2002	9:00	DISSOLVED OXYGEN (DO) mg/l		Water	7.59	mg/l	
DGLC-01	6/10/2002	9:00	DISSOLVED OXYGEN (DO) mg/l		Water	7.01	mg/l	
DGLC-01	8/12/2002	15:30	DISSOLVED OXYGEN (DO) mg/l		Water	6.9	mg/l	
DGO-01	6/11/2002	10:45	DISSOLVED OXYGEN (DO) mg/l		Water	6.8	mg/l	
DGO-01	5/15/2012	10:45	Dissolved oxygen saturation		Water	109.5	%	
DGLC-01	9/18/2012	10:15	Dissolved oxygen saturation		Water	97.2	%	
DGLC-01	5/14/2012	9:30	Dissolved oxygen saturation		Water	97	%	
DGP-01	5/15/2012	11:30	Dissolved oxygen saturation		Water	96	%	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	7/10/2012	8:30	Dissolved oxygen saturation		Water	70.3	%	
DGP-01	9/17/2012	11:00	Dissolved oxygen saturation		Water	61.5	%	
RLE-1	7/22/2009	11:10	Endrin	Total	Water	0.0014	ug/l	9 ft
DGLC-01	9/18/2012	10:14	Fluoride	Total	Water	3.83	mg/l	
DGLC-01	7/10/2012	8:29	Fluoride	Total	Water	1.35	mg/l	
DGLC-01	5/14/2012	9:30	Fluoride	Total	Water	0.4	mg/l	
DGO-01	5/15/2012	10:45	Fluoride	Total	Water	0.32	mg/l	
RLE-1	8/22/2012	10:26	Fluoride	Total	Water	0.27	mg/l	9 ft
RLE-1	7/18/2012	10:06	Fluoride	Total	Water	0.25	mg/l	9 ft
DGP-01	9/17/2012	10:59	Fluoride	Total	Water	0.25	mg/l	
DGP-01	5/15/2012	11:29	Fluoride	Total	Water	0.24	mg/l	
RLE-1	6/11/2012	10:53	Fluoride	Total	Water	0.23	mg/l	9 ft
RLE-1	4/17/2012	10:33	Fluoride	Total	Water	0.14	mg/l	9 ft
DGLC-01	7/16/2007	9:45	Fluorides	Total	Water	0.369	mg/l	
DGLC-01	6/18/2007	14:15	Fluorides	Total	Water	0.364	mg/l	
DGO-01	7/3/2007	12:00	Fluorides	Total	Water	0.31	mg/l	
DGPC-01	9/25/2007	13:40	Fluorides	Total	Water	0.301	mg/l	
DGPC-01	6/12/2007	9:00	Fluorides	Total	Water	0.265	mg/l	
DGP-01	9/25/2007	12:20	Fluorides	Total	Water	0.26	mg/l	
DGO-01	8/20/2007	12:20	Fluorides	Total	Water	0.227	mg/l	
DGP-01	8/20/2007	11:40	Fluorides	Total	Water	0.193	mg/l	
DGP-01	7/18/2007	10:45	Fluorides	Total	Water	0.191	mg/l	
DGPC-01	8/20/2007	11:00	Fluorides	Total	Water	0.182	mg/l	
DGLC-01	8/12/2002	15:30	FLUORIDES		Water	0.53	mg/l	
DGLC-01	9/11/2002	14:30	FLUORIDES		Water	0.48	mg/l	
DGP-01	8/8/2002	12:45	FLUORIDES		Water	0.3	mg/l	
DGLC-01	6/10/2002	9:00	FLUORIDES		Water	0.29	mg/l	
DGP-01	9/11/2002	13:00	FLUORIDES		Water	0.26	mg/l	
DGP-01	6/11/2002	9:00	FLUORIDES		Water	0.25	mg/l	
DGO-01	6/11/2002	10:45	FLUORIDES		Water	0.25	mg/l	
RLE-1	10/14/2009	11:10	Hardness, Ca + Mg	Total	Water	114000	ug/l	9 ft
RLE-1	4/14/2009	11:18	Hardness, Ca + Mg	Total	Water	110000	ug/l	9 ft
RLE-1	7/22/2009	11:10	Hardness, Ca + Mg	Total	Water	108000	ug/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	8/11/2009	11:10	Hardness, Ca + Mg	Total	Water	108000	ug/l	9 ft
RLE-1	6/3/2009	12:05	Hardness, Ca + Mg	Total	Water	106000	ug/l	9 ft
DGLC-01	9/26/2007	12:10	Hardness, Ca + Mg	Total	Water	766	mg/l	
DGLC-01	8/22/2007	9:45	Hardness, Ca + Mg	Total	Water	700	mg/l	
DGLC-01	7/16/2007	9:45	Hardness, Ca + Mg	Total	Water	310	mg/l	
DGPC-01	8/20/2007	11:00	Hardness, Ca + Mg	Total	Water	300	mg/l	
DGPC-01	6/12/2007	9:00	Hardness, Ca + Mg	Total	Water	270	mg/l	
DGLC-01	6/18/2007	14:15	Hardness, Ca + Mg	Total	Water	270	mg/l	
DGPC-01	9/25/2007	13:40	Hardness, Ca + Mg	Total	Water	270	mg/l	
DGO-01	8/20/2007	12:20	Hardness, Ca + Mg	Total	Water	260	mg/l	
DGP-01	8/20/2007	11:40	Hardness, Ca + Mg	Total	Water	260	mg/l	
DGP-01	7/18/2007	10:45	Hardness, Ca + Mg	Total	Water	250	mg/l	
DGP-01	9/25/2007	12:20	Hardness, Ca + Mg	Total	Water	240	mg/l	
DGO-01	7/3/2007	12:00	Hardness, Ca + Mg	Total	Water	220	mg/l	
RLE-1	06/04/2003	10:48	Hardness, Ca + Mg		Water	125	mg/l	11 ft
RLE-1	10/15/2003	11:10	Hardness, Ca + Mg		Water	108	mg/l	7 ft
RLE-1	08/07/2003	10:41	Hardness, Ca + Mg		Water	97	mg/l	7 ft
RLE-1	07/23/2003	10:36	Hardness, Ca + Mg		Water	90	mg/l	9 ft
RLE-1	8/22/2012	10:26	Hardness, Ca, Mg		Water	131000	ug/l	9 ft
RLE-1	4/17/2012	10:33	Hardness, Ca, Mg		Water	130000	ug/l	9 ft
RLE-1	6/11/2012	10:53	Hardness, Ca, Mg		Water	124000	ug/l	9 ft
RLE-1	7/18/2012	10:06	Hardness, Ca, Mg		Water	117000	ug/l	9 ft
DGLC-01	9/18/2012	10:14	Hardness, Ca, Mg		Water	669	mg/l	
DGLC-01	7/10/2012	8:29	Hardness, Ca, Mg		Water	391	mg/l	
DGP-01	5/15/2012	11:29	Hardness, Ca, Mg		Water	257	mg/l	
DGLC-01	5/14/2012	9:30	Hardness, Ca, Mg		Water	246	mg/l	
DGP-01	9/17/2012	10:59	Hardness, Ca, Mg		Water	226	mg/l	
DGO-01	5/15/2012	10:45	Hardness, Ca, Mg		Water	183	mg/l	
DGLC-01	8/12/2002	15:30	HARDNESS, CA,MG mg/l		Water	291	mg/l	
DGP-01	9/11/2002	13:00	HARDNESS, CA,MG mg/l		Water	288	mg/l	
DGLC-01	6/10/2002	9:00	HARDNESS, CA,MG mg/l		Water	279	mg/l	
DGP-01	8/8/2002	12:45	HARDNESS, CA,MG mg/l		Water	265	mg/l	
DGLC-01	9/11/2002	14:30	HARDNESS, CA,MG mg/l		Water	248	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	6/11/2002	9:00	HARDNESS, CA,MG mg/l		Water	238	mg/l	
DGO-01	6/11/2002	10:45	HARDNESS, CA,MG mg/l		Water	128	mg/l	
RLE-1	8/22/2012	10:26	Heptachlor	Total	Water	0.00076	ug/l	9 ft
DGO-01	5/15/2012	10:45	Inorganic nitrogen (nitrate and nitrite)	Total	Water	12.8	mg/l	
DGLC-01	5/14/2012	9:30	Inorganic nitrogen (nitrate and nitrite)	Total	Water	10.8	mg/l	
DGP-01	5/15/2012	11:29	Inorganic nitrogen (nitrate and nitrite)	Total	Water	8.31	mg/l	
RLE-1	6/11/2012	10:49	Inorganic nitrogen (nitrate and nitrite)	Total	Water	1.33	mg/l	1 ft
RLE-1	6/11/2012	10:53	Inorganic nitrogen (nitrate and nitrite)	Total	Water	1.25	mg/l	9 ft
RLE-1	6/11/2012	11:00	Inorganic nitrogen (nitrate and nitrite)	Total	Water	1.24	mg/l	16 ft
RLE-1	4/17/2012	10:33	Inorganic nitrogen (nitrate and nitrite)	Total	Water	0.331	mg/l	9 ft
RLE-1	4/17/2012	10:32	Inorganic nitrogen (nitrate and nitrite)	Total	Water	0.322	mg/l	1 ft
RLE-1	4/17/2012	10:35	Inorganic nitrogen (nitrate and nitrite)	Total	Water	0.321	mg/l	15 ft
DGLC-01	7/16/2012	11:35	Inorganic nitrogen (nitrate and nitrite)	Total	Water	0.074	mg/l	
RLE-1	7/18/2012	10:06	Inorganic nitrogen (nitrate and nitrite)	Total	Water	0.033	mg/l	9 ft
DGLC-01	9/18/2012	10:14	Inorganic nitrogen (nitrate and nitrite)	Total	Water	0.019	mg/l	
RLE-1	7/18/2012	10:07	Inorganic nitrogen (nitrate and nitrite)	Total	Water	0.018	mg/l	15 ft
RLE-1	7/22/2009	10:51	Iron	Total	Sediment	29600	mg/kg	20 ft
RLE-1	07/23/2003	10:36	Iron	Total	Sediment	29000	mg/kg	19 ft
RLE-3	07/23/2003	11:48	Iron	Total	Sediment	24000	mg/kg	15 ft
DGLC-01	8/22/2007	9:45	Iron	Total	Water	2200	ug/l	
RLE-1	6/3/2009	12:05	Iron	Total	Water	1940	ug/l	9 ft
RLE-1	4/14/2009	11:18	Iron	Total	Water	1700	ug/l	9 ft
DGLC-01	9/18/2012	10:14	Iron	Total	Water	1690	ug/l	
RLE-1	7/22/2009	11:10	Iron	Total	Water	1440	ug/l	9 ft
RLE-1	8/22/2012	10:26	Iron	Total	Water	1410	ug/l	9 ft
DGPC-01	8/20/2007	11:00	Iron	Total	Water	1400	ug/l	
DGP-01	5/15/2012	11:29	Iron	Total	Water	1160	ug/l	
DGLC-01	5/14/2012	9:30	Iron	Total	Water	990	ug/l	
DGP-01	7/18/2007	10:45	Iron	Total	Water	950	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Iron	Total	Water	950	ug/l	
RLE-1	7/18/2012	10:06	Iron	Total	Water	943	ug/l	9 ft
DGPC-01	9/25/2007	13:40	Iron	Dissolved	Water	940	ug/l	
DGLC-01	7/10/2012	8:29	Iron	Total	Water	907	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	4/17/2012	10:33	Iron	Total	Water	887	ug/l	9 ft
DGLC-01	9/26/2007	12:10	Iron	Total	Water	884	ug/l	
RLE-1	10/14/2009	11:10	Iron	Total	Water	836	ug/l	9 ft
DGP-01	8/20/2007	11:40	Iron	Total	Water	810	ug/l	
DGLC-BU-C1	9/5/2007	10:00	Iron	Total	Water	700	ug/l	
RLE-1	10/15/2003	11:10	Iron	Total	Water	650	ug/l	7 ft
RLE-1	6/11/2012	10:53	Iron	Total	Water	550	ug/l	9 ft
DGP-01	9/25/2007	12:20	Iron	Total	Water	550	ug/l	
DGO-01	8/20/2007	12:20	Iron	Total	Water	540	ug/l	
DGP-01	9/17/2012	10:59	Iron	Total	Water	479	ug/l	
RLE-1	06/04/2003	10:48	Iron	Total	Water	330	ug/l	11 ft
RLE-1	8/11/2009	11:10	Iron	Total	Water	296	ug/l	9 ft
DGLC-01	6/18/2007	14:15	Iron	Total	Water	260	ug/l	
DGO-01	7/3/2007	12:00	Iron	Total	Water	210	ug/l	
DGPC-01	6/12/2007	9:00	Iron	Total	Water	200	ug/l	
RLE-1	08/07/2003	10:41	Iron	Total	Water	190	ug/l	7 ft
RLE-1	07/23/2003	10:36	Iron	Total	Water	180	ug/l	9 ft
RLE-1	04/15/2003	10:30	Iron	Total	Water	170	ug/l	7 ft
DGO-01	5/15/2012	10:45	Iron	Total	Water	156	ug/l	
DGLC-BU-E1	9/5/2007	11:10	Iron	Total	Water	150	ug/l	
DGLC-01	7/16/2007	9:45	Iron	Total	Water	140	ug/l	
DGLC-01	7/10/2012	8:29	Iron	Dissolved	Water	56.4	ug/l	
DGPC-01	9/25/2007	13:40	Iron	Total	Water	42	ug/l	
DGLC-01	5/14/2012	9:30	Iron	Dissolved	Water	38.3	ug/l	
DGPC-01	8/20/2007	11:00	Iron	Dissolved	Water	33	ug/l	
DGP-01	5/15/2012	11:29	Iron	Dissolved	Water	21.1	ug/l	
DGLC-01	9/26/2007	12:10	Iron	Dissolved	Water	19.5	ug/l	
DGP-01	9/25/2007	12:20	Iron	Dissolved	Water	18	ug/l	
DGO-01	5/15/2012	10:45	Iron	Dissolved	Water	4.61	ug/l	
DGO-01	6/11/2002	10:45	IRON,Dissolved ug/l	Dissolved	Water	290	ug/l	
DGLC-01	6/10/2002	9:00	IRON,Dissolved ug/l	Dissolved	Water	270	ug/l	
DGLC-01	8/12/2002	15:30	IRON,Dissolved ug/l	Dissolved	Water	50	ug/l	
DGP-01	8/8/2002	12:45	IRON,Dissolved ug/l	Dissolved	Water	50	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	6/11/2002	9:00	IRON,Dissolved ug/l	Dissolved	Water	50	ug/l	
DGP-01	9/11/2002	13:00	IRON,Dissolved ug/l	Dissolved	Water	50	ug/l	
DGLC-01	9/11/2002	14:30	IRON,Dissolved ug/l	Dissolved	Water	50	ug/l	
DGO-01	6/11/2002	10:45	IRON,Total ug/l	Total	Water	30000	ug/l	
DGP-01	6/11/2002	9:00	IRON,Total ug/l	Total	Water	3200	ug/l	
DGLC-01	8/12/2002	15:30	IRON,Total ug/l	Total	Water	2000	ug/l	
DGLC-01	6/10/2002	9:00	IRON,Total ug/l	Total	Water	2000	ug/l	
DGLC-01	9/11/2002	14:30	IRON,Total ug/l	Total	Water	1300	ug/l	
DGP-01	8/8/2002	12:45	IRON,Total ug/l	Total	Water	680	ug/l	
DGP-01	9/11/2002	13:00	IRON,Total ug/l	Total	Water	540	ug/l	
DGLC-01	9/18/2012	8:39	Kjeldahl nitrogen	Total	Water	2.03	mg/l	
DGLC-01	9/18/2012	10:14	Kjeldahl nitrogen	Total	Water	1.99	mg/l	
RLE-1	8/22/2012	10:24	Kjeldahl nitrogen	Total	Water	1.26	mg/l	1 ft
RLE-1	8/22/2012	10:27	Kjeldahl nitrogen	Total	Water	1.15	mg/l	14 ft
RLE-1	8/22/2012	10:26	Kjeldahl nitrogen	Total	Water	1.09	mg/l	9 ft
RLE-1	7/18/2012	10:07	Kjeldahl nitrogen	Total	Water	0.931	mg/l	15 ft
RLE-1	7/18/2012	10:06	Kjeldahl nitrogen	Total	Water	0.92	mg/l	9 ft
RLE-1	7/18/2012	10:06	Kjeldahl nitrogen	Total	Water	0.899	mg/l	1 ft
DGP-01	9/18/2012	12:44	Kjeldahl nitrogen	Total	Water	0.863	mg/l	
DGP-01	7/17/2012	8:06	Kjeldahl nitrogen	Total	Water	0.858	mg/l	
DGP-01	9/17/2012	10:59	Kjeldahl nitrogen	Total	Water	0.798	mg/l	
RLE-1	4/17/2012	10:32	Kjeldahl nitrogen	Total	Water	0.713	mg/l	1 ft
DGO-01	7/17/2012	7:00	Kjeldahl nitrogen	Total	Water	0.66	mg/l	
RLE-1	6/11/2012	11:00	Kjeldahl nitrogen	Total	Water	0.562	mg/l	16 ft
RLE-1	6/11/2012	10:53	Kjeldahl nitrogen	Total	Water	0.557	mg/l	9 ft
DGLC-01	5/14/2012	9:30	Kjeldahl nitrogen	Total	Water	0.539	mg/l	
RLE-1	6/11/2012	10:49	Kjeldahl nitrogen	Total	Water	0.503	mg/l	1 ft
DGP-01	5/15/2012	11:29	Kjeldahl nitrogen	Total	Water	0.429	mg/l	
DGO-01	5/15/2012	10:45	Kjeldahl nitrogen	Total	Water	0.172	mg/l	
RLE-1	07/23/2003	10:36	Lead	Total	Sediment	22	mg/kg	19 ft
RLE-1	7/22/2009	10:51	Lead	Total	Sediment	21.2	mg/kg	20 ft
RLE-3	07/23/2003	11:48	Lead	Total	Sediment	19	mg/kg	15 ft
RLE-1	10/14/2009	11:10	Lead	Total	Water	7.27	ug/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	7/18/2012	10:06	Lead	Total	Water	3.3	ug/l	9 ft
RLE-1	6/3/2009	12:05	Lead	Total	Water	3.27	ug/l	9 ft
RLE-1	7/22/2009	11:10	Lead	Total	Water	3.2	ug/l	9 ft
DGLC-01	9/18/2012	10:14	Lead	Total	Water	2.67	ug/l	
RLE-1	4/14/2009	11:18	Lead	Total	Water	2.26	ug/l	9 ft
RLE-1	8/22/2012	10:26	Lead	Total	Water	1.64	ug/l	9 ft
DGO-01	5/15/2012	10:45	Lead	Dissolved	Water	1.62	ug/l	
DGP-01	5/15/2012	11:29	Lead	Total	Water	1.58	ug/l	
RLE-1	4/17/2012	10:33	Lead	Total	Water	1.18	ug/l	9 ft
DGP-01	5/15/2012	11:29	Lead	Dissolved	Water	1.13	ug/l	
DGLC-01	7/10/2012	8:29	Lead	Total	Water	0.85	ug/l	
DGP-01	9/25/2007	12:20	Lead	Total	Water	0.42	ug/l	
DGPC-01	9/25/2007	13:40	Lead	Total	Water	0.26	ug/l	
DGLC-01	9/26/2007	12:10	Lead	Total	Water	0.06	ug/l	
DGLC-01	8/12/2002	15:30	LEAD,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGP-01	8/8/2002	12:45	LEAD,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGLC-01	6/10/2002	9:00	LEAD,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGP-01	6/11/2002	9:00	LEAD,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGO-01	6/11/2002	10:45	LEAD,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGP-01	9/11/2002	13:00	LEAD,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGLC-01	9/11/2002	14:30	LEAD,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGO-01	6/11/2002	10:45	LEAD,Total ug/l	Total	Water	26	ug/l	
DGLC-01	8/12/2002	15:30	LEAD,Total ug/l	Total	Water	5	ug/l	
DGP-01	8/8/2002	12:45	LEAD,Total ug/l	Total	Water	5	ug/l	
DGLC-01	6/10/2002	9:00	LEAD,Total ug/l	Total	Water	5	ug/l	
DGP-01	6/11/2002	9:00	LEAD,Total ug/l	Total	Water	5	ug/l	
DGP-01	9/11/2002	13:00	LEAD,Total ug/l	Total	Water	5	ug/l	
DGLC-01	9/11/2002	14:30	LEAD,Total ug/l	Total	Water	5	ug/l	
DGLC-BU-E1	9/5/2007	11:10	Magnesium	Total	Water	88000	ug/l	
DGLC-BU-C1	9/5/2007	10:00	Magnesium	Total	Water	84000	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Magnesium	Total	Water	82000	ug/l	
DGLC-01	9/26/2007	12:10	Magnesium	Total	Water	79600	ug/l	
DGLC-01	9/26/2007	12:10	Magnesium	Dissolved	Water	74900	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	9/18/2012	10:14	Magnesium	Total	Water	74900	ug/l	
DGLC-01	9/18/2012	10:14	Magnesium	Dissolved	Water	72200	ug/l	
DGLC-01	8/22/2007	9:45	Magnesium	Total	Water	71000	ug/l	
DGLC-01	8/22/2007	9:45	Magnesium	Dissolved	Water	65000	ug/l	
DGLC-01	7/10/2012	8:29	Magnesium	Total	Water	46500	ug/l	
DGLC-01	7/10/2012	8:29	Magnesium	Dissolved	Water	44300	ug/l	
DGLC-01	7/16/2007	9:45	Magnesium	Total	Water	34000	ug/l	
DGPC-01	9/25/2007	13:40	Magnesium	Total	Water	32000	ug/l	
DGPC-01	8/20/2007	11:00	Magnesium	Dissolved	Water	30000	ug/l	
DGLC-01	6/18/2007	14:15	Magnesium	Dissolved	Water	29000	ug/l	
DGLC-01	6/18/2007	14:15	Magnesium	Total	Water	29000	ug/l	
DGPC-01	8/20/2007	11:00	Magnesium	Total	Water	29000	ug/l	
DGPC-01	6/12/2007	9:00	Magnesium	Dissolved	Water	28000	ug/l	
DGPC-01	6/12/2007	9:00	Magnesium	Total	Water	28000	ug/l	
DGPC-01	9/25/2007	13:40	Magnesium	Dissolved	Water	27000	ug/l	
DGP-01	5/15/2012	11:29	Magnesium	Total	Water	26400	ug/l	
DGLC-01	5/14/2012	9:30	Magnesium	Dissolved	Water	26300	ug/l	
DGLC-01	5/14/2012	9:30	Magnesium	Total	Water	26300	ug/l	
DGP-01	8/20/2007	11:40	Magnesium	Dissolved	Water	26000	ug/l	
DGP-01	5/15/2012	11:29	Magnesium	Dissolved	Water	25900	ug/l	
DGP-01	9/17/2012	10:59	Magnesium	Dissolved	Water	25100	ug/l	
DGP-01	9/17/2012	10:59	Magnesium	Total	Water	25000	ug/l	
DGP-01	7/18/2007	10:45	Magnesium	Total	Water	25000	ug/l	
DGP-01	8/20/2007	11:40	Magnesium	Total	Water	25000	ug/l	
DGP-01	9/25/2007	12:20	Magnesium	Dissolved	Water	23000	ug/l	
DGP-01	9/25/2007	12:20	Magnesium	Total	Water	23000	ug/l	
DGO-01	7/3/2007	12:00	Magnesium	Dissolved	Water	22000	ug/l	
DGO-01	8/20/2007	12:20	Magnesium	Dissolved	Water	22000	ug/l	
DGO-01	8/20/2007	12:20	Magnesium	Total	Water	21000	ug/l	
DGO-01	7/3/2007	12:00	Magnesium	Total	Water	20000	ug/l	
DGO-01	5/15/2012	10:45	Magnesium	Total	Water	17300	ug/l	
DGO-01	5/15/2012	10:45	Magnesium	Dissolved	Water	16300	ug/l	
RLE-1	8/22/2012	10:26	Magnesium	Total	Water	11800	ug/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	7/18/2012	10:06	Magnesium	Total	Water	10800	ug/l	9 ft
RLE-1	6/11/2012	10:53	Magnesium	Total	Water	9960	ug/l	9 ft
RLE-1	10/14/2009	11:10	Magnesium	Total	Water	9660	ug/l	9 ft
RLE-1	4/17/2012	10:33	Magnesium	Total	Water	9580	ug/l	9 ft
RLE-1	8/11/2009	11:10	Magnesium	Total	Water	9010	ug/l	9 ft
RLE-1	7/22/2009	11:10	Magnesium	Total	Water	8940	ug/l	9 ft
RLE-1	4/14/2009	11:18	Magnesium	Total	Water	8840	ug/l	9 ft
RLE-1	6/3/2009	12:05	Magnesium	Total	Water	8720	ug/l	9 ft
RLE-1	06/04/2003	10:48	Magnesium	Total	Water	9.8	mg/l	11 ft
RLE-1	04/15/2003	10:30	Magnesium	Total	Water	8.9	mg/l	7 ft
RLE-1	10/15/2003	11:10	Magnesium	Total	Water	8.7	mg/l	7 ft
RLE-1	08/07/2003	10:41	Magnesium	Total	Water	8.2	mg/l	7 ft
RLE-1	07/23/2003	10:36	Magnesium	Total	Water	7.7	mg/l	9 ft
DGP-01	9/11/2002	13:00	MAGNESIUM, Dissolved mg/l	Dissolved	Water	30	mg/l	
DGLC-01	8/12/2002	15:30	MAGNESIUM, Dissolved mg/l	Dissolved	Water	28	mg/l	
DGLC-01	9/11/2002	14:30	MAGNESIUM, Dissolved mg/l	Dissolved	Water	27	mg/l	
DGP-01	8/8/2002	12:45	MAGNESIUM, Dissolved mg/l	Dissolved	Water	26	mg/l	
DGP-01	6/11/2002	9:00	MAGNESIUM, Dissolved mg/l	Dissolved	Water	24	mg/l	
DGLC-01	6/10/2002	9:00	MAGNESIUM, Dissolved mg/l	Dissolved	Water	17	mg/l	
DGO-01	6/11/2002	10:45	MAGNESIUM, Dissolved mg/l	Dissolved	Water	6	mg/l	
DGLC-01	8/12/2002	15:30	MAGNESIUM,Total mg/l	Total	Water	31	mg/l	
DGLC-01	6/10/2002	9:00	MAGNESIUM,Total mg/l	Total	Water	30	mg/l	
DGP-01	9/11/2002	13:00	MAGNESIUM,Total mg/l	Total	Water	30	mg/l	
DGLC-01	9/11/2002	14:30	MAGNESIUM,Total mg/l	Total	Water	27	mg/l	
DGP-01	8/8/2002	12:45	MAGNESIUM,Total mg/l	Total	Water	26	mg/l	
DGP-01	6/11/2002	9:00	MAGNESIUM,Total mg/l	Total	Water	24	mg/l	
DGO-01	6/11/2002	10:45	MAGNESIUM,Total mg/l	Total	Water	13	mg/l	
RLE-1	10/15/2003	11:10	Malathion		Water	0.15	ug/l	7 ft
DGPC-01	9/25/2007	13:40	Manganese	Total	Water	1600	ug/l	
DGPC-01	8/20/2007	11:00	Manganese	Total	Water	1500	ug/l	
DGPC-01	8/20/2007	11:00	Manganese	Dissolved	Water	1400	ug/l	
DGP-01	8/20/2007	11:40	Manganese	Total	Water	1100	ug/l	
RLE-1	07/23/2003	10:36	Manganese	Total	Sediment	1000	mg/kg	19 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	8/20/2007	11:40	Manganese	Dissolved	Water	1000	ug/l	
DGP-01	9/25/2007	12:20	Manganese	Dissolved	Water	880	ug/l	
RLE-1	7/22/2009	10:51	Manganese	Total	Sediment	879	mg/kg	20 ft
RLE-3	07/23/2003	11:48	Manganese	Total	Sediment	860	mg/kg	15 ft
DGP-01	9/25/2007	12:20	Manganese	Total	Water	850	ug/l	
DGLC-01	8/22/2007	9:45	Manganese	Total	Water	810	ug/l	
DGLC-01	7/10/2012	8:29	Manganese	Total	Water	722	ug/l	
DGPC-01	9/25/2007	13:40	Manganese	Dissolved	Water	710	ug/l	
DGLC-01	9/18/2012	10:14	Manganese	Total	Water	637	ug/l	
DGO-01	8/20/2007	12:20	Manganese	Total	Water	610	ug/l	
DGLC-01	9/26/2007	12:10	Manganese	Total	Water	596	ug/l	
DGLC-01	8/22/2007	9:45	Manganese	Dissolved	Water	590	ug/l	
DGLC-01	9/18/2012	10:14	Manganese	Dissolved	Water	556	ug/l	
DGLC-01	9/26/2007	12:10	Manganese	Dissolved	Water	512	ug/l	
DGLC-01	7/10/2012	8:29	Manganese	Dissolved	Water	508	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Manganese	Total	Water	480	ug/l	
RLE-1	8/22/2012	10:26	Manganese	Total	Water	462	ug/l	9 ft
DGO-01	8/20/2007	12:20	Manganese	Dissolved	Water	370	ug/l	
DGLC-BU-C1	9/5/2007	10:00	Manganese	Total	Water	340	ug/l	
RLE-1	4/17/2012	10:33	Manganese	Total	Water	275	ug/l	9 ft
DGP-01	9/17/2012	10:59	Manganese	Total	Water	244	ug/l	
RLE-1	6/11/2012	10:53	Manganese	Total	Water	229	ug/l	9 ft
RLE-1	7/18/2012	10:06	Manganese	Total	Water	211	ug/l	9 ft
RLE-1	10/14/2009	11:10	Manganese	Total	Water	209	ug/l	9 ft
RLE-1	6/3/2009	12:05	Manganese	Total	Water	190	ug/l	9 ft
RLE-1	8/11/2009	11:10	Manganese	Total	Water	190	ug/l	9 ft
RLE-1	7/22/2009	11:10	Manganese	Total	Water	188	ug/l	9 ft
RLE-1	10/15/2003	11:10	Manganese	Total	Water	180	ug/l	7 ft
DGP-01	9/17/2012	10:59	Manganese	Dissolved	Water	135	ug/l	
RLE-1	06/04/2003	10:48	Manganese	Total	Water	120	ug/l	11 ft
DGP-01	7/18/2007	10:45	Manganese	Total	Water	110	ug/l	
DGP-01	5/15/2012	11:29	Manganese	Total	Water	104	ug/l	
RLE-1	4/14/2009	11:18	Manganese	Total	Water	103	ug/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	04/15/2003	10:30	Manganese	Total	Water	100	ug/l	7 ft
DGPC-01	6/12/2007	9:00	Manganese	Total	Water	82	ug/l	
DGPC-01	6/12/2007	9:00	Manganese	Dissolved	Water	61	ug/l	
DGP-01	5/15/2012	11:29	Manganese	Dissolved	Water	47.1	ug/l	
RLE-1	07/23/2003	10:36	Manganese	Total	Water	44	ug/l	9 ft
DGLC-BU-E1	9/5/2007	11:10	Manganese	Total	Water	44	ug/l	
RLE-1	08/07/2003	10:41	Manganese	Total	Water	41	ug/l	7 ft
DGLC-01	5/14/2012	9:30	Manganese	Total	Water	33.9	ug/l	
DGO-01	7/3/2007	12:00	Manganese	Total	Water	26	ug/l	
DGLC-01	5/14/2012	9:30	Manganese	Dissolved	Water	21.7	ug/l	
DGLC-01	7/16/2007	9:45	Manganese	Total	Water	20	ug/l	
DGO-01	7/3/2007	12:00	Manganese	Dissolved	Water	19	ug/l	
DGLC-01	6/18/2007	14:15	Manganese	Total	Water	14	ug/l	
DGO-01	5/15/2012	10:45	Manganese	Total	Water	13.1	ug/l	
DGO-01	5/15/2012	10:45	Manganese	Dissolved	Water	9.91	ug/l	
DGLC-01	6/18/2007	14:15	Manganese	Dissolved	Water	8.5	ug/l	
DGP-01	8/8/2002	12:45	MANGANESE,Dissolved ug/l	Dissolved	Water	550	ug/l	
DGLC-01	8/12/2002	15:30	MANGANESE,Dissolved ug/l	Dissolved	Water	320	ug/l	
DGP-01	9/11/2002	13:00	MANGANESE,Dissolved ug/l	Dissolved	Water	320	ug/l	
DGLC-01	9/11/2002	14:30	MANGANESE,Dissolved ug/l	Dissolved	Water	48	ug/l	
DGP-01	6/11/2002	9:00	MANGANESE,Dissolved ug/l	Dissolved	Water	30	ug/l	
DGLC-01	6/10/2002	9:00	MANGANESE,Dissolved ug/l	Dissolved	Water	15	ug/l	
DGO-01	6/11/2002	10:45	MANGANESE,Dissolved ug/l	Dissolved	Water	15	ug/l	
DGO-01	6/11/2002	10:45	MANGANESE,Total ug/l	Total	Water	830	ug/l	
DGP-01	8/8/2002	12:45	MANGANESE,Total ug/l	Total	Water	580	ug/l	
DGLC-01	8/12/2002	15:30	MANGANESE,Total ug/l	Total	Water	410	ug/l	
DGP-01	9/11/2002	13:00	MANGANESE,Total ug/l	Total	Water	340	ug/l	
DGP-01	6/11/2002	9:00	MANGANESE,Total ug/l	Total	Water	190	ug/l	
DGLC-01	9/11/2002	14:30	MANGANESE,Total ug/l	Total	Water	100	ug/l	
DGLC-01	6/10/2002	9:00	MANGANESE,Total ug/l	Total	Water	74	ug/l	
RLE-1	07/23/2003	10:36	Mercury	Supernate	Sediment	0.18	mg/kg	19 ft
RLE-3	07/23/2003	11:48	Mercury	Supernate	Sediment	0.17	mg/kg	15 ft
RLE-1	7/22/2009	10:51	Mercury	Total	Sediment	0.07	mg/kg	20 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	8/12/2002	15:30	MERCURY,Total	Total	Water	0.01	ug/l	
DGP-01	8/8/2002	12:45	MERCURY,Total	Total	Water	0.01	ug/l	
DGLC-01	6/10/2002	9:00	MERCURY,Total	Total	Water	0.01	ug/l	
DGP-01	6/11/2002	9:00	MERCURY,Total	Total	Water	0.01	ug/l	
DGP-01	9/11/2002	13:00	MERCURY,Total	Total	Water	0.01	ug/l	
DGLC-01	9/11/2002	14:30	MERCURY,Total	Total	Water	0.01	ug/l	
RLE-1	6/3/2009	12:05	Methoxychlor	Total	Water	0.011	ug/l	9 ft
RLE-1	7/22/2009	11:10	Methoxychlor	Total	Water	0.0046	ug/l	9 ft
RLE-1	6/11/2012	10:53	Metolachlor	Total	Water	0.49	ug/l	9 ft
RLE-1	7/18/2012	10:06	Metolachlor	Total	Water	0.14	ug/l	9 ft
RLE-1	8/22/2012	10:26	Metolachlor	Total	Water	0.11	ug/l	9 ft
RLE-1	7/22/2009	11:10	Metolachlor	Total	Water	0.11	ug/l	9 ft
RLE-1	6/3/2009	12:05	Metolachlor	Total	Water	0.096	ug/l	9 ft
RLE-1	8/11/2009	11:10	Metolachlor	Total	Water	0.063	ug/l	9 ft
RLE-1	4/17/2012	10:33	Metolachlor	Total	Water	0.042	ug/l	9 ft
RLE-1	6/11/2012	10:53	Metribuzin	Total	Water	0.024	ug/l	9 ft
RLE-1	8/22/2012	10:26	Metribuzin	Total	Water	0.016	ug/l	9 ft
RLE-1	4/17/2012	10:33	Metribuzin	Total	Water	0.015	ug/l	9 ft
RLE-1	7/18/2012	10:06	Metribuzin	Total	Water	0.0054	ug/l	9 ft
RLE-1	7/22/2009	10:51	Nickel	Total	Sediment	25	mg/kg	20 ft
RLE-1	07/23/2003	10:36	Nickel	Total	Sediment	22	mg/kg	19 ft
RLE-3	07/23/2003	11:48	Nickel	Total	Sediment	19	mg/kg	15 ft
DGP-01	9/25/2007	12:20	Nickel	Total	Water	5.4	ug/l	
DGPC-01	8/20/2007	11:00	Nickel	Total	Water	5.2	ug/l	
DGLC-01	9/18/2012	10:14	Nickel	Total	Water	5.01	ug/l	
DGP-01	8/20/2007	11:40	Nickel	Total	Water	5	ug/l	
DGP-01	9/25/2007	12:20	Nickel	Dissolved	Water	4.9	ug/l	
DGPC-01	9/25/2007	13:40	Nickel	Total	Water	4.9	ug/l	
DGPC-01	9/25/2007	13:40	Nickel	Dissolved	Water	4	ug/l	
DGLC-01	9/18/2012	10:14	Nickel	Dissolved	Water	3.18	ug/l	
DGLC-01	7/10/2012	8:29	Nickel	Total	Water	3.14	ug/l	
DGLC-01	9/26/2007	12:10	Nickel	Total	Water	2.92	ug/l	
DGLC-01	9/26/2007	12:10	Nickel	Dissolved	Water	2.68	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	4/14/2009	11:18	Nickel	Total	Water	2.25	ug/l	9 ft
RLE-1	8/22/2012	10:26	Nickel	Total	Water	2.2	ug/l	9 ft
RLE-1	6/3/2009	12:05	Nickel	Total	Water	2.17	ug/l	9 ft
DGP-01	9/17/2012	10:59	Nickel	Total	Water	2.16	ug/l	
DGP-01	9/17/2012	10:59	Nickel	Dissolved	Water	1.91	ug/l	
DGLC-01	7/10/2012	8:29	Nickel	Dissolved	Water	1.89	ug/l	
RLE-1	7/22/2009	11:10	Nickel	Total	Water	1.75	ug/l	9 ft
RLE-1	6/11/2012	10:53	Nickel	Total	Water	1.62	ug/l	9 ft
RLE-1	10/14/2009	11:10	Nickel	Total	Water	1.58	ug/l	9 ft
RLE-1	7/18/2012	10:06	Nickel	Total	Water	1.25	ug/l	9 ft
RLE-1	8/11/2009	11:10	Nickel	Total	Water	1.21	ug/l	9 ft
RLE-1	4/17/2012	10:33	Nickel	Total	Water	0.79	ug/l	9 ft
DGLC-01	8/12/2002	15:30	NICKEL,Dissolved ug/l	Dissolved	Water	25	ug/l	
DGP-01	8/8/2002	12:45	NICKEL,Dissolved ug/l	Dissolved	Water	25	ug/l	
DGLC-01	6/10/2002	9:00	NICKEL,Dissolved ug/l	Dissolved	Water	25	ug/l	
DGP-01	6/11/2002	9:00	NICKEL,Dissolved ug/l	Dissolved	Water	25	ug/l	
DGO-01	6/11/2002	10:45	NICKEL,Dissolved ug/l	Dissolved	Water	25	ug/l	
DGP-01	9/11/2002	13:00	NICKEL,Dissolved ug/l	Dissolved	Water	25	ug/l	
DGLC-01	9/11/2002	14:30	NICKEL,Dissolved ug/l	Dissolved	Water	25	ug/l	
DGO-01	6/11/2002	10:45	NICKEL,Total ug/l	Total	Water	43	ug/l	
DGLC-01	8/12/2002	15:30	NICKEL,Total ug/l	Total	Water	25	ug/l	
DGP-01	8/8/2002	12:45	NICKEL,Total ug/l	Total	Water	25	ug/l	
DGLC-01	6/10/2002	9:00	NICKEL,Total ug/l	Total	Water	25	ug/l	
DGP-01	6/11/2002	9:00	NICKEL,Total ug/l	Total	Water	25	ug/l	
DGP-01	9/11/2002	13:00	NICKEL,Total ug/l	Total	Water	25	ug/l	
DGLC-01	9/11/2002	14:30	NICKEL,Total ug/l	Total	Water	25	ug/l	
RLE-1	07/23/2003	10:36	Nitrogen, ammonia (NH3) as NH3	Total	Water	2.1	mg/l	17 ft
RLE-1	06/04/2003	10:48	Nitrogen, ammonia (NH3) as NH3	Total	Water	1.2	mg/l	18 ft
RLE-1	10/15/2003	11:10	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.38	mg/l	14 ft
RLE-1	10/15/2003	11:10	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.35	mg/l	1 ft
RLE-1	10/15/2003	11:10	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.35	mg/l	7 ft
RLE-2	10/15/2003	11:45	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.35	mg/l	1 ft
RLE-3	10/15/2003	12:00	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.31	mg/l	1 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	08/07/2003	10:41	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.15	mg/l	11 ft
RLE-3	06/04/2003	12:03	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.1	mg/l	1 ft
RLE-1	06/04/2003	10:48	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.09	mg/l	11 ft
RLE-1	08/07/2003	10:41	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.07	mg/l	1 ft
RLE-1	06/04/2003	10:48	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.07	mg/l	1 ft
RLE-2	06/04/2003	11:37	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.06	mg/l	1 ft
RLE-1	08/07/2003	10:41	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.05	mg/l	7 ft
RLE-2	08/07/2003	11:21	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.05	mg/l	1 ft
RLE-3	07/23/2003	11:48	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.03	mg/l	1 ft
RLE-1	07/23/2003	10:36	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.02	mg/l	1 ft
RLE-3	08/07/2003	11:38	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.02	mg/l	1 ft
RLE-1	07/23/2003	10:36	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.01	mg/l	9 ft
RLE-2	04/15/2003	11:06	Nitrogen, ammonia (NH3) as NH3	Total	Water	0.01	mg/l	1 ft
DGO-01	6/11/2002	10:45	NITROGEN, AMMONIA (NH3),Total mg/l	Total	Water	0.26	mg/l	
DGLC-01	6/10/2002	9:00	NITROGEN, AMMONIA (NH3),Total mg/l	Total	Water	0.08	mg/l	
DGP-01	9/11/2002	13:00	NITROGEN, AMMONIA (NH3),Total mg/l	Total	Water	0.07	mg/l	
DGP-01	8/8/2002	12:45	NITROGEN, AMMONIA (NH3),Total mg/l	Total	Water	0.04	mg/l	
DGP-01	6/11/2002	9:00	NITROGEN, AMMONIA (NH3),Total mg/l	Total	Water	0.04	mg/l	
DGLC-01	9/11/2002	14:30	NITROGEN, AMMONIA (NH3),Total mg/l	Total	Water	0.03	mg/l	
DGLC-01	8/12/2002	15:30	NITROGEN, AMMONIA (NH3),Total mg/l	Total	Water	0.01	mg/l	
RLE-1	8/11/2009	11:25	Nitrogen, ammonia as N	Total	Water	3.39	mg/l	16 ft
RLE-1	7/22/2009	10:59	Nitrogen, ammonia as N	Total	Water	2.52	mg/l	18 ft
DGPC-01	8/20/2007	11:00	Nitrogen, ammonia as N	Total	Water	1.37	mg/l	
RLE-1	6/3/2009	11:40	Nitrogen, ammonia as N	Total	Water	1.24	mg/l	17 ft
RLE-1	8/11/2009	11:00	Nitrogen, ammonia as N	Total	Water	0.547	mg/l	1 ft
DGPC-01	9/25/2007	13:40	Nitrogen, ammonia as N	Total	Water	0.509	mg/l	
RLE-1	6/3/2009	12:05	Nitrogen, ammonia as N	Total	Water	0.485	mg/l	9 ft
RLE-1	8/11/2009	11:10	Nitrogen, ammonia as N	Total	Water	0.3	mg/l	9 ft
RLE-1	10/14/2009	11:10	Nitrogen, ammonia as N	Total	Water	0.263	mg/l	9 ft
RLE-1	6/3/2009	11:30	Nitrogen, ammonia as N	Total	Water	0.194	mg/l	1 ft
RLE-1	10/14/2009	11:20	Nitrogen, ammonia as N	Total	Water	0.194	mg/l	17 ft
RLE-1	7/22/2009	11:10	Nitrogen, ammonia as N	Total	Water	0.189	mg/l	9 ft
DGLC-01	6/18/2007	14:15	Nitrogen, ammonia as N	Total	Water	0.182	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	10/14/2009	11:00	Nitrogen, ammonia as N	Total	Water	0.181	mg/l	1 ft
DGLC-BU-C2	9/5/2007	11:45	Nitrogen, ammonia as N	Total	Water	0.171	mg/l	
DGLC-BU-E1	9/5/2007	11:10	Nitrogen, ammonia as N	Total	Water	0.157	mg/l	
RLE-1	4/14/2009	11:28	Nitrogen, ammonia as N	Total	Water	0.121	mg/l	18 ft
RLE-1	4/14/2009	11:08	Nitrogen, ammonia as N	Total	Water	0.118	mg/l	1 ft
RLE-1	4/14/2009	11:18	Nitrogen, ammonia as N	Total	Water	0.118	mg/l	9 ft
DGLC-BU-C1	9/5/2007	10:00	Nitrogen, ammonia as N	Total	Water	0.116	mg/l	
DGP-01	9/17/2007	10:45	Nitrogen, ammonia as N	Total	Water	0.11	mg/l	
RLE-1	7/22/2009	10:51	Nitrogen, ammonia as N	Total	Water	0.0745	mg/l	1 ft
DGO-01	7/3/2007	12:00	Nitrogen, ammonia as N	Total	Water	0.064	mg/l	
DGP-01	7/16/2007	11:00	Nitrogen, ammonia as N	Total	Water	0.04	mg/l	
RLE-3	07/23/2003	11:48	Nitrogen, Kjeldahl	Total	Sediment	15000	mg/kg	15 ft
RLE-1	07/23/2003	10:36	Nitrogen, Kjeldahl	Total	Sediment	13000	mg/kg	19 ft
RLE-1	7/22/2009	10:51	Nitrogen, Kjeldahl	Total	Sediment	4560	mg/kg	20 ft
RLE-1	7/22/2009	10:59	Nitrogen, Kjeldahl	Total	Water	3.69	mg/l	18 ft
RLE-1	8/11/2009	11:25	Nitrogen, Kjeldahl	Total	Water	3.09	mg/l	16 ft
RLE-1	07/23/2003	10:36	Nitrogen, Kjeldahl	Total	Water	2.82	mg/l	17 ft
DGLC-BU-E1	9/5/2007	11:10	Nitrogen, Kjeldahl	Total	Water	2.74	mg/l	
RLE-1	06/04/2003	10:48	Nitrogen, Kjeldahl	Total	Water	2.2	mg/l	18 ft
RLE-1	6/3/2009	11:40	Nitrogen, Kjeldahl	Total	Water	1.9	mg/l	17 ft
DGLC-01	8/22/2007	9:45	Nitrogen, Kjeldahl	Total	Water	1.85	mg/l	
DGLC-BU-C1	9/5/2007	10:00	Nitrogen, Kjeldahl	Total	Water	1.68	mg/l	
DGLC-BU-C2	9/5/2007	11:45	Nitrogen, Kjeldahl	Total	Water	1.59	mg/l	
RLE-1	7/22/2009	10:51	Nitrogen, Kjeldahl	Total	Water	1.46	mg/l	1 ft
RLE-1	10/15/2003	11:10	Nitrogen, Kjeldahl	Total	Water	1.4	mg/l	1 ft
DGLC-01	9/26/2007	12:10	Nitrogen, Kjeldahl	Total	Water	1.37	mg/l	
RLE-1	08/07/2003	10:41	Nitrogen, Kjeldahl	Total	Water	1.31	mg/l	11 ft
RLE-1	10/15/2003	11:10	Nitrogen, Kjeldahl	Total	Water	1.3	mg/l	14 ft
RLE-1	08/07/2003	10:41	Nitrogen, Kjeldahl	Total	Water	1.29	mg/l	7 ft
RLE-1	7/22/2009	11:10	Nitrogen, Kjeldahl	Total	Water	1.26	mg/l	9 ft
RLE-1	10/15/2003	11:10	Nitrogen, Kjeldahl	Total	Water	1.2	mg/l	7 ft
RLE-3	07/23/2003	11:48	Nitrogen, Kjeldahl	Total	Water	1.19	mg/l	1 ft
RLE-1	6/3/2009	12:05	Nitrogen, Kjeldahl	Total	Water	1.15	mg/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-2	10/15/2003	11:45	Nitrogen, Kjeldahl	Total	Water	1.1	mg/l	1 ft
RLE-3	10/15/2003	12:00	Nitrogen, Kjeldahl	Total	Water	1.1	mg/l	1 ft
RLE-2	07/23/2003	11:28	Nitrogen, Kjeldahl	Total	Water	1.06	mg/l	1 ft
DGPC-01	9/25/2007	13:40	Nitrogen, Kjeldahl	Total	Water	1.05	mg/l	
RLE-1	06/04/2003	10:48	Nitrogen, Kjeldahl	Total	Water	1	mg/l	11 ft
RLE-2	06/04/2003	11:37	Nitrogen, Kjeldahl	Total	Water	1	mg/l	1 ft
RLE-1	07/23/2003	10:36	Nitrogen, Kjeldahl	Total	Water	0.97	mg/l	1 ft
RLE-1	4/14/2009	11:28	Nitrogen, Kjeldahl	Total	Water	0.957	mg/l	18 ft
RLE-1	07/23/2003	10:36	Nitrogen, Kjeldahl	Total	Water	0.93	mg/l	9 ft
DGP-01	7/18/2007	10:45	Nitrogen, Kjeldahl	Total	Water	0.93	mg/l	
DGO-01	8/20/2007	12:20	Nitrogen, Kjeldahl	Total	Water	0.921	mg/l	
RLE-1	10/14/2009	11:00	Nitrogen, Kjeldahl	Total	Water	0.911	mg/l	1 ft
RLE-2	08/07/2003	11:21	Nitrogen, Kjeldahl	Total	Water	0.89	mg/l	1 ft
RLE-1	4/14/2009	11:18	Nitrogen, Kjeldahl	Total	Water	0.886	mg/l	9 ft
RLE-1	6/3/2009	11:30	Nitrogen, Kjeldahl	Total	Water	0.874	mg/l	1 ft
RLE-1	08/07/2003	10:41	Nitrogen, Kjeldahl	Total	Water	0.84	mg/l	1 ft
RLE-3	08/07/2003	11:38	Nitrogen, Kjeldahl	Total	Water	0.84	mg/l	1 ft
RLE-1	06/04/2003	10:48	Nitrogen, Kjeldahl	Total	Water	0.81	mg/l	1 ft
RLE-3	06/04/2003	12:03	Nitrogen, Kjeldahl	Total	Water	0.81	mg/l	1 ft
DGP-01	8/20/2007	11:40	Nitrogen, Kjeldahl	Total	Water	0.801	mg/l	
RLE-1	10/14/2009	11:20	Nitrogen, Kjeldahl	Total	Water	0.78	mg/l	17 ft
RLE-1	4/14/2009	11:08	Nitrogen, Kjeldahl	Total	Water	0.75	mg/l	1 ft
RLE-1	8/11/2009	11:10	Nitrogen, Kjeldahl	Total	Water	0.703	mg/l	9 ft
DGPC-01	6/12/2007	9:00	Nitrogen, Kjeldahl	Total	Water	0.623	mg/l	
RLE-1	10/14/2009	11:10	Nitrogen, Kjeldahl	Total	Water	0.548	mg/l	9 ft
DGP-01	7/16/2007	11:00	Nitrogen, Kjeldahl	Total	Water	0.516	mg/l	
RLE-1	8/11/2009	11:00	Nitrogen, Kjeldahl	Total	Water	0.503	mg/l	1 ft
DGO-01	7/3/2007	12:00	Nitrogen, Kjeldahl	Total	Water	0.5	mg/l	
DGP-01	7/9/2007	11:20	Nitrogen, Kjeldahl	Total	Water	0.494	mg/l	
DGLC-01	7/16/2007	9:45	Nitrogen, Kjeldahl	Total	Water	0.49	mg/l	
DGP-01	9/17/2007	10:45	Nitrogen, Kjeldahl	Total	Water	0.425	mg/l	
DGLC-01	6/18/2007	14:15	Nitrogen, Kjeldahl	Total	Water	0.36	mg/l	
DGP-01	9/25/2007	10:45	Nitrogen, Kjeldahl	Total	Water	0.343	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	6/18/2007	14:15	Nitrogen, Nitrate (NO3) as N	Total	Water	9.65	mg/l	
DGPC-01	6/12/2007	9:00	Nitrogen, Nitrate (NO3) as N	Total	Water	7.05	mg/l	
DGO-01	7/3/2007	12:00	Nitrogen, Nitrate (NO3) as N	Total	Water	6.86	mg/l	
DGP-01	7/18/2007	10:45	Nitrogen, Nitrate (NO3) as N	Total	Water	3.71	mg/l	
DGLC-01	7/16/2007	9:45	Nitrogen, Nitrate (NO3) as N	Total	Water	3.44	mg/l	
DGLC-BU-E1	9/5/2007	11:10	Nitrogen, Nitrate (NO3) as N	Total	Water	1.71	mg/l	
DGLC-BU-C1	9/5/2007	10:00	Nitrogen, Nitrate (NO3) as N	Total	Water	0.607	mg/l	
DGPC-01	9/25/2007	13:40	Nitrogen, Nitrate (NO3) as N	Total	Water	0.272	mg/l	
DGLC-01	9/26/2007	12:10	Nitrogen, Nitrate (NO3) as N	Total	Water	0.239	mg/l	
DGPC-01	8/20/2007	11:00	Nitrogen, Nitrate (NO3) as N	Total	Water	0.214	mg/l	
DGLC-BU-C2	9/5/2007	11:45	Nitrogen, Nitrate (NO3) as N	Total	Water	0.204	mg/l	
DGP-01	8/20/2007	11:40	Nitrogen, Nitrate (NO3) as N	Total	Water	0.154	mg/l	
DGP-01	9/25/2007	12:20	Nitrogen, Nitrate (NO3) as N	Total	Water	0.038	mg/l	
DGO-01	8/20/2007	12:20	Nitrogen, Nitrate (NO3) as N	Total	Water	0.011	mg/l	
DGLC-01	6/18/2007	14:15	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	9.78	mg/l	
DGPC-01	6/12/2007	9:00	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	7.11	mg/l	
DGP-01	7/9/2007	11:20	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	6.88	mg/l	
DGO-01	7/3/2007	12:00	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	6.87	mg/l	
DGP-01	7/16/2007	11:00	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	3.91	mg/l	
DGP-01	7/18/2007	10:45	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	3.75	mg/l	
DGLC-01	7/16/2007	9:45	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	3.44	mg/l	
RLE-1	4/14/2009	11:28	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	2.75	mg/l	18 ft
RLE-1	4/14/2009	11:18	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	2.66	mg/l	9 ft
RLE-1	4/14/2009	11:08	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	2.6	mg/l	1 ft
RLE-1	6/3/2009	11:30	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	2.32	mg/l	1 ft
RLE-1	6/3/2009	12:05	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	2.31	mg/l	9 ft
DGLC-BU-E1	9/5/2007	11:10	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	1.71	mg/l	
RLE-1	6/3/2009	11:40	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	1.22	mg/l	17 ft
RLE-1	06/04/2003	10:48	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.742	mg/l	1 ft
RLE-1	06/04/2003	10:48	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.729	mg/l	11 ft
RLE-2	06/04/2003	11:37	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.722	mg/l	1 ft
RLE-3	06/04/2003	12:03	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.711	mg/l	1 ft
RLE-1	7/22/2009	11:10	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.692	mg/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	7/22/2009	10:51	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.68	mg/l	1 ft
DGLC-BU-C1	9/5/2007	10:00	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.607	mg/l	
DGPC-01	9/25/2007	13:40	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.317	mg/l	
DGPC-01	8/20/2007	11:00	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.303	mg/l	
DGP-01	9/17/2007	10:45	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.249	mg/l	
DGLC-01	9/26/2007	12:10	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.239	mg/l	
RLE-1	04/15/2003	10:30	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.209	mg/l	1 ft
DGLC-BU-C2	9/5/2007	11:45	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.204	mg/l	
RLE-1	04/15/2003	10:30	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.203	mg/l	7 ft
RLE-2	04/15/2003	11:06	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.198	mg/l	1 ft
RLE-1	04/15/2003	10:30	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.195	mg/l	11 ft
RLE-3	10/15/2003	12:00	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.168	mg/l	1 ft
RLE-1	10/15/2003	11:10	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.166	mg/l	14 ft
RLE-1	10/15/2003	11:10	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.159	mg/l	1 ft
RLE-1	10/15/2003	11:10	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.158	mg/l	7 ft
RLE-2	10/15/2003	11:45	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.158	mg/l	1 ft
DGP-01	8/20/2007	11:40	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.154	mg/l	
RLE-1	8/11/2009	11:10	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.081	mg/l	9 ft
RLE-1	10/14/2009	11:20	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.068	mg/l	17 ft
DGP-01	9/25/2007	10:45	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.063	mg/l	
RLE-1	8/11/2009	11:00	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.059	mg/l	1 ft
RLE-1	10/14/2009	11:10	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.058	mg/l	9 ft
RLE-1	10/14/2009	11:00	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.056	mg/l	1 ft
RLE-1	06/04/2003	10:48	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.052	mg/l	18 ft
RLE-1	07/23/2003	10:36	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.044	mg/l	9 ft
RLE-1	07/23/2003	10:36	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.039	mg/l	1 ft
RLE-1	7/22/2009	10:59	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.038	mg/l	18 ft
DGP-01	9/25/2007	12:20	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.038	mg/l	
RLE-1	8/11/2009	11:25	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.024	mg/l	16 ft
RLE-1	08/07/2003	10:41	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.022	mg/l	1 ft
RLE-1	08/07/2003	10:41	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.015	mg/l	7 ft
RLE-3	08/07/2003	11:38	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.015	mg/l	1 ft
RLE-1	08/07/2003	10:41	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.013	mg/l	11 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-2	08/07/2003	11:21	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.011	mg/l	1 ft
DGO-01	8/20/2007	12:20	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Total	Water	0.011	mg/l	
DGLC-01	6/10/2002	9:00	NITROGEN, NITRITE (NO2) + NITRATE (NO3),Total mg/l	Total	Water	13	mg/l	
DGP-01	6/11/2002	9:00	NITROGEN, NITRITE (NO2) + NITRATE (NO3),Total mg/l	Total	Water	10	mg/l	
DGO-01	6/11/2002	10:45	NITROGEN, NITRITE (NO2) + NITRATE (NO3),Total mg/l	Total	Water	4.8	mg/l	
DGP-01	9/11/2002	13:00	NITROGEN, NITRITE (NO2) + NITRATE (NO3),Total mg/l	Total	Water	1.53	mg/l	
DGLC-01	9/11/2002	14:30	NITROGEN, NITRITE (NO2) + NITRATE (NO3),Total mg/l	Total	Water	0.94	mg/l	
DGP-01	8/8/2002	12:45	NITROGEN, NITRITE (NO2) + NITRATE (NO3),Total mg/l	Total	Water	0.46	mg/l	
DGLC-01	8/12/2002	15:30	NITROGEN, NITRITE (NO2) + NITRATE (NO3),Total mg/l	Total	Water	0.01	mg/l	
DGLC-01	6/18/2007	14:15	Nitrogen, Nitrite (NO2) as N	Total	Water	0.207	mg/l	
DGPC-01	8/20/2007	11:00	Nitrogen, Nitrite (NO2) as N	Total	Water	0.088	mg/l	
DGPC-01	6/12/2007	9:00	Nitrogen, Nitrite (NO2) as N	Total	Water	0.063	mg/l	
DGPC-01	9/25/2007	13:40	Nitrogen, Nitrite (NO2) as N	Total	Water	0.046	mg/l	
DGP-01	7/18/2007	10:45	Nitrogen, Nitrite (NO2) as N	Total	Water	0.042	mg/l	
DGO-01	7/3/2007	12:00	Nitrogen, Nitrite (NO2) as N	Total	Water	0.011	mg/l	
DGLC-01	7/10/2012	8:29	Organic carbon	Total	Water	11.1	mg/l	
DGLC-01	9/18/2012	10:14	Organic carbon	Total	Water	8.05	mg/l	
DGP-01	9/17/2012	10:59	Organic carbon	Total	Water	6.65	mg/l	
DGP-01	5/15/2012	11:29	Organic carbon	Total	Water	2	mg/l	
DGO-01	5/15/2012	10:45	Organic carbon	Total	Water	1.58	mg/l	
DGLC-01	5/14/2012	9:30	Organic carbon	Total	Water	1.55	mg/l	
RLE-1	6/11/2012	10:53	Pentachlorophenol	Total	Water	0.021	ug/l	9 ft
RLE-1	08/07/2003	10:41	рН		Water	9.21	s.u.	1 ft
RLE-2	08/07/2003	11:21	рН		Water	9.21	s.u.	1 ft
RLE-3	08/07/2003	11:38	рН		Water	9.15	s.u.	1 ft
RLE-3	07/23/2003	11:48	рН		Water	8.57	s.u.	1 ft
RLE-2	07/23/2003	11:28	рН		Water	8.56	s.u.	1 ft
DGLC-01	7/10/2012	8:30	рН		Water	8.55	s.u.	
DGLC-BU-C2	9/5/2007	11:45	рН		Water	8.47	s.u.	
DGLC-01	6/18/2007	14:15	рН		Water	8.34	s.u.	
DGO-01	5/15/2012	10:45	рН		Water	8.3	s.u.	
RLE-2	04/15/2003	11:06	рН		Water	8.23	s.u.	1 ft
RLE-1	07/23/2003	10:36	pH		Water	8.22	s.u.	1 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	04/15/2003	10:30	рН		Water	8.2	s.u.	1 ft
RLE-3	04/15/2003	11:20	рН		Water	8.16	s.u.	1 ft
RLE-1	04/15/2003	10:30	рН		Water	8.14	s.u.	7 ft
DGLC-01	9/18/2012	10:15	рН		Water	8.1	s.u.	
DGLC-BU-C1	9/5/2007	10:00	рН		Water	8.03	s.u.	
DGP-01	5/15/2012	11:30	рН		Water	8	s.u.	
DGLC-01	8/22/2007	9:45	рН		Water	7.96	s.u.	
DGP-01	9/17/2012	11:00	рН		Water	7.9	s.u.	
RLE-1	06/04/2003	10:48	рН		Water	7.83	s.u.	1 ft
RLE-2	06/04/2003	11:37	рН		Water	7.83	s.u.	1 ft
RLE-3	06/04/2003	12:03	рН		Water	7.81	s.u.	1 ft
DGO-01	7/3/2007	12:00	рН		Water	7.79	s.u.	
DGLC-01	9/26/2007	12:10	рН		Water	7.77	s.u.	
DGPC-01	6/12/2007	9:00	рН		Water	7.77	s.u.	
DGLC-BU-E1	9/5/2007	11:10	рН		Water	7.72	s.u.	
DGO-01	8/20/2007	12:20	рН		Water	7.72	s.u.	
DGLC-01	7/16/2007	9:45	рН		Water	7.71	s.u.	
RLE-1	04/15/2003	10:30	рН		Water	7.66	s.u.	11 ft
DGPC-01	8/20/2007	11:00	рН		Water	7.65	s.u.	
RLE-1	08/07/2003	10:41	рН		Water	7.63	s.u.	7 ft
DGP-01	7/18/2007	10:45	рН		Water	7.63	s.u.	
DGP-01	8/20/2007	11:40	рН		Water	7.63	s.u.	
DGP-01	9/25/2007	12:20	рН		Water	7.63	s.u.	
DGPC-01	9/25/2007	13:40	рН		Water	7.61	s.u.	
RLE-1	06/04/2003	10:48	рН		Water	7.52	s.u.	11 ft
RLE-3	10/15/2003	12:00	рН		Water	7.51	s.u.	1 ft
RLE-2	10/15/2003	11:45	рН		Water	7.5	s.u.	1 ft
DGLC-01	5/14/2012	9:30	рН		Water	7.5	s.u.	
RLE-1	10/15/2003	11:10	рН		Water	7.45	s.u.	1 ft
RLE-1	10/15/2003	11:10	рН		Water	7.41	s.u.	7 ft
RLE-1	10/15/2003	11:10	рН		Water	7.25	s.u.	14 ft
RLE-1	08/07/2003	10:41	рН		Water	7.07	s.u.	11 ft
RLE-1	07/23/2003	10:36	рН		Water	7.06	s.u.	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	06/04/2003	10:48	рН		Water	6.97	s.u.	18 ft
RLE-1	07/23/2003	10:36	рН		Water	6.55	s.u.	17 ft
DGLC-01	9/11/2002	14:30	РН		Water	8.4	s.u.	
DGLC-01	8/12/2002	15:30	РН		Water	7.9	s.u.	
DGP-01	9/11/2002	13:00	РН		Water	7.86	s.u.	
DGP-01	6/11/2002	9:00	РН		Water	7.8	s.u.	
DGP-01	8/8/2002	12:45	РН		Water	7.7	s.u.	
DGO-01	6/11/2002	10:45	РН		Water	7.42	s.u.	
DGLC-01	6/10/2002	9:00	РН		Water	7.4	s.u.	
DGP-01	8/20/2007	11:40	Phenols	Total	Water	74	ug/l	
DGLC-01	9/26/2007	12:10	Phenols	Total	Water	74	ug/l	
DGPC-01	6/12/2007	9:00	Phenols	Total	Water	46	ug/l	
DGPC-01	8/20/2007	11:00	Phenols	Total	Water	46	ug/l	
DGLC-01	8/22/2007	9:45	Phenols	Total	Water	40	ug/l	
DGP-01	7/18/2007	10:45	Phenols	Total	Water	35	ug/l	
DGO-01	5/15/2012	10:45	Phenols	Total	Water	6.46	ug/l	
RLE-1	10/14/2009	11:10	Phenols	Total	Water	5.84	ug/l	9 ft
DGP-01	5/15/2012	11:29	Phenols	Total	Water	5.05	ug/l	
RLE-1	6/3/2009	12:05	Phenols	Total	Water	3.45	ug/l	9 ft
RLE-1	4/17/2012	10:33	Phenols	Total	Water	2.83	ug/l	9 ft
DGLC-01	5/14/2012	9:30	Phenols	Total	Water	2.83	ug/l	
DGLC-01	9/18/2012	10:14	Phenols	Total	Water	2.69	ug/l	
DGP-01	9/17/2012	10:59	Phenols	Total	Water	1.83	ug/l	
DGO-01	6/11/2002	10:45	PHENOLS		Water	38	ug/l	
DGLC-01	6/10/2002	9:00	PHENOLS		Water	10	ug/l	
DGP-01	6/11/2002	9:00	PHENOLS		Water	10	ug/l	
DGLC-01	5/14/2012	9:30	Pheophytin a	Total	Water	1.73	ug/l	1 ft
RLE-1	4/17/2012	10:32	Pheophytin a	Total	Water	0.53	ug/l	3 ft
DGP-01	7/16/2007	11:00	Pheophytin-a	Total	Water	14	ug/l	
DGLC-01	8/22/2007	9:45	Pheophytin-a	Total	Water	12.5	ug/l	
RLE-1	7/22/2009	10:51	Pheophytin-a	Total	Water	6.68	ug/l	4 ft
DGLC-01	9/26/2007	12:10	Pheophytin-a	Total	Water	5.07	ug/l	
DGPC-01	8/20/2007	11:00	Pheophytin-a	Total	Water	3.51	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGO-01	8/20/2007	12:20	Pheophytin-a	Total	Water	1.39	ug/l	
DGPC-01	9/25/2007	13:40	Pheophytin-a	Total	Water	1.1	ug/l	
DGLC-01	9/11/2002	14:30	PHEOPHYTIN-A		Water	2.39	ug/l	
DGLC-01	8/12/2002	15:30	PHEOPHYTIN-A		Water	1.99	ug/l	
DGP-01	8/8/2002	12:45	PHEOPHYTIN-A		Water	1	ug/l	
DGLC-01	6/10/2002	9:00	PHEOPHYTIN-A		Water	1	ug/l	
DGP-01	6/11/2002	9:00	PHEOPHYTIN-A		Water	1	ug/l	
DGO-01	6/11/2002	10:45	PHEOPHYTIN-A		Water	1	ug/l	
DGP-01	9/11/2002	13:00	PHEOPHYTIN-A		Water	1	ug/l	
DGLC-01	7/16/2012	11:35	Phosphorus	Total	Water	1.78	mg/l	
DGLC-01	7/10/2012	8:29	Phosphorus	Total	Water	1.51	mg/l	
DGLC-01	7/10/2012	8:29	Phosphorus	Dissolved	Water	0.858	mg/l	
DGLC-01	9/18/2012	10:14	Phosphorus	Total	Water	0.662	mg/l	
DGLC-01	9/18/2012	8:39	Phosphorus	Total	Water	0.607	mg/l	
DGLC-01	9/18/2012	10:14	Phosphorus	Dissolved	Water	0.447	mg/l	
RLE-1	4/17/2012	10:32	Phosphorus	Total	Water	0.282	mg/l	1 ft
DGO-01	7/17/2012	7:00	Phosphorus	Total	Water	0.142	mg/l	
DGLC-01	5/14/2012	9:30	Phosphorus	Total	Water	0.13	mg/l	
DGP-01	5/15/2012	11:29	Phosphorus	Total	Water	0.13	mg/l	
RLE-1	7/18/2012	10:07	Phosphorus	Total	Water	0.115	mg/l	15 ft
DGP-01	9/18/2012	12:44	Phosphorus	Total	Water	0.104	mg/l	
DGP-01	9/17/2012	10:59	Phosphorus	Total	Water	0.097	mg/l	
DGLC-01	5/14/2012	9:30	Phosphorus	Dissolved	Water	0.095	mg/l	
RLE-1	8/22/2012	10:24	Phosphorus	Total	Water	0.091	mg/l	1 ft
RLE-1	8/22/2012	10:27	Phosphorus	Total	Water	0.091	mg/l	14 ft
RLE-1	6/11/2012	11:00	Phosphorus	Total	Water	0.089	mg/l	16 ft
RLE-1	7/18/2012	10:06	Phosphorus	Total	Water	0.083	mg/l	9 ft
RLE-1	8/22/2012	10:26	Phosphorus	Total	Water	0.081	mg/l	9 ft
RLE-1	4/17/2012	10:35	Phosphorus	Total	Water	0.08	mg/l	15 ft
RLE-1	7/18/2012	10:06	Phosphorus	Total	Water	0.076	mg/l	1 ft
DGP-01	7/17/2012	8:06	Phosphorus	Total	Water	0.076	mg/l	
DGP-01	5/15/2012	11:29	Phosphorus	Dissolved	Water	0.075	mg/l	
RLE-1	4/17/2012	10:32	Phosphorus	Dissolved	Water	0.072	mg/l	1 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	6/11/2012	10:53	Phosphorus	Total	Water	0.065	mg/l	9 ft
RLE-1	4/17/2012	10:33	Phosphorus	Dissolved	Water	0.063	mg/l	9 ft
RLE-1	4/17/2012	10:33	Phosphorus	Total	Water	0.062	mg/l	9 ft
RLE-1	6/11/2012	10:49	Phosphorus	Total	Water	0.057	mg/l	1 ft
DGO-01	5/15/2012	10:45	Phosphorus	Total	Water	0.054	mg/l	
DGP-01	9/17/2012	10:59	Phosphorus	Dissolved	Water	0.053	mg/l	
DGO-01	5/15/2012	10:45	Phosphorus	Dissolved	Water	0.043	mg/l	
RLE-1	7/18/2012	10:06	Phosphorus	Dissolved	Water	0.038	mg/l	9 ft
RLE-1	8/22/2012	10:26	Phosphorus	Dissolved	Water	0.028	mg/l	9 ft
RLE-1	8/22/2012	10:27	Phosphorus	Dissolved	Water	0.028	mg/l	14 ft
RLE-1	8/22/2012	10:24	Phosphorus	Dissolved	Water	0.027	mg/l	1 ft
RLE-1	4/17/2012	10:35	Phosphorus	Dissolved	Water	0.026	mg/l	15 ft
RLE-1	7/18/2012	10:07	Phosphorus	Dissolved	Water	0.024	mg/l	15 ft
RLE-1	7/18/2012	10:06	Phosphorus	Dissolved	Water	0.012	mg/l	1 ft
RLE-1	6/11/2012	10:49	Phosphorus	Dissolved	Water	0.011	mg/l	1 ft
RLE-1	6/11/2012	11:00	Phosphorus	Dissolved	Water	0.011	mg/l	16 ft
RLE-1	6/11/2012	10:53	Phosphorus	Dissolved	Water	0.01	mg/l	9 ft
RLE-1	07/23/2003	10:36	Phosphorus as P	Total	Sediment	1570	mg/kg	19 ft
RLE-1	7/22/2009	10:51	Phosphorus as P	Total	Sediment	846	mg/kg	20 ft
RLE-3	07/23/2003	11:48	Phosphorus as P	Total	Sediment	810	mg/kg	15 ft
RLE-1	7/22/2009	10:59	Phosphorus as P	Total	Water	1.5	mg/l	18 ft
DGLC-BU-E1	9/5/2007	11:10	Phosphorus as P	Total	Water	1.35	mg/l	
DGLC-01	8/22/2007	9:45	Phosphorus as P	Total	Water	1.34	mg/l	
RLE-1	8/11/2009	11:25	Phosphorus as P	Total	Water	1.27	mg/l	16 ft
DGLC-BU-C1	9/5/2007	10:00	Phosphorus as P	Total	Water	1.14	mg/l	
DGLC-01	8/22/2007	9:45	Phosphorus as P	Dissolved	Water	0.797	mg/l	
DGLC-BU-C2	9/5/2007	11:45	Phosphorus as P	Total	Water	0.773	mg/l	
RLE-1	07/23/2003	10:36	Phosphorus as P	Total	Water	0.557	mg/l	17 ft
RLE-1	07/23/2003	10:36	Phosphorus as P	Dissolved	Water	0.452	mg/l	17 ft
DGLC-01	7/16/2007	9:45	Phosphorus as P	Total	Water	0.338	mg/l	
RLE-1	06/04/2003	10:48	Phosphorus as P	Total	Water	0.309	mg/l	18 ft
RLE-1	6/3/2009	11:40	Phosphorus as P	Total	Water	0.307	mg/l	17 ft
DGP-01	7/18/2007	10:45	Phosphorus as P	Total	Water	0.272	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGO-01	8/20/2007	12:20	Phosphorus as P	Total	Water	0.256	mg/l	
DGLC-01	7/16/2007	9:45	Phosphorus as P	Dissolved	Water	0.24	mg/l	
DGPC-01	8/20/2007	11:00	Phosphorus as P	Total	Water	0.229	mg/l	
DGO-01	7/3/2007	12:00	Phosphorus as P	Total	Water	0.207	mg/l	
RLE-1	4/14/2009	11:28	Phosphorus as P	Total	Water	0.197	mg/l	18 ft
DGO-01	7/3/2007	12:00	Phosphorus as P	Dissolved	Water	0.191	mg/l	
RLE-1	6/3/2009	12:05	Phosphorus as P	Total	Water	0.178	mg/l	9 ft
RLE-1	4/14/2009	11:18	Phosphorus as P	Total	Water	0.166	mg/l	9 ft
DGO-01	8/20/2007	12:20	Phosphorus as P	Dissolved	Water	0.166	mg/l	
RLE-1	4/14/2009	11:08	Phosphorus as P	Total	Water	0.158	mg/l	1 ft
RLE-1	6/3/2009	11:30	Phosphorus as P	Dissolved	Water	0.15	mg/l	1 ft
DGLC-01	6/18/2007	14:15	Phosphorus as P	Total	Water	0.145	mg/l	
DGP-01	7/9/2007	11:20	Phosphorus as P	Total	Water	0.141	mg/l	
RLE-1	7/22/2009	10:51	Phosphorus as P	Total	Water	0.139	mg/l	1 ft
RLE-1	6/3/2009	11:30	Phosphorus as P	Total	Water	0.129	mg/l	1 ft
DGLC-01	6/18/2007	14:15	Phosphorus as P	Dissolved	Water	0.126	mg/l	
DGP-01	9/25/2007	10:45	Phosphorus as P	Total	Water	0.126	mg/l	
DGPC-01	8/20/2007	11:00	Phosphorus as P	Dissolved	Water	0.123	mg/l	
DGP-01	8/20/2007	11:40	Phosphorus as P	Total	Water	0.123	mg/l	
RLE-1	8/11/2009	11:25	Phosphorus as P	Dissolved	Water	0.121	mg/l	16 ft
DGP-01	7/18/2007	10:45	Phosphorus as P	Dissolved	Water	0.115	mg/l	
DGP-01	9/17/2007	10:45	Phosphorus as P	Total	Water	0.115	mg/l	
RLE-1	7/22/2009	11:10	Phosphorus as P	Total	Water	0.108	mg/l	9 ft
DGP-01	7/16/2007	11:00	Phosphorus as P	Total	Water	0.097	mg/l	
DGPC-01	6/12/2007	9:00	Phosphorus as P	Total	Water	0.0874	mg/l	
RLE-1	6/3/2009	12:05	Phosphorus as P	Dissolved	Water	0.087	mg/l	9 ft
RLE-1	8/11/2009	11:10	Phosphorus as P	Total	Water	0.086	mg/l	9 ft
RLE-1	08/07/2003	10:41	Phosphorus as P	Total	Water	0.082	mg/l	7 ft
RLE-1	4/14/2009	11:18	Phosphorus as P	Dissolved	Water	0.079	mg/l	9 ft
RLE-1	4/14/2009	11:08	Phosphorus as P	Dissolved	Water	0.078	mg/l	1 ft
RLE-1	4/14/2009	11:28	Phosphorus as P	Dissolved	Water	0.078	mg/l	18 ft
RLE-1	08/07/2003	10:41	Phosphorus as P	Total	Water	0.077	mg/l	11 ft
RLE-1	06/04/2003	10:48	Phosphorus as P	Dissolved	Water	0.077	mg/l	18 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGPC-01	6/12/2007	9:00	Phosphorus as P	Dissolved	Water	0.0758	mg/l	
RLE-3	10/15/2003	12:00	Phosphorus as P	Total	Water	0.073	mg/l	1 ft
RLE-1	7/22/2009	10:59	Phosphorus as P	Dissolved	Water	0.068	mg/l	18 ft
RLE-1	6/3/2009	11:40	Phosphorus as P	Dissolved	Water	0.065	mg/l	17 ft
RLE-1	10/14/2009	11:20	Phosphorus as P	Total	Water	0.064	mg/l	17 ft
RLE-1	07/23/2003	10:36	Phosphorus as P	Total	Water	0.062	mg/l	9 ft
RLE-2	10/15/2003	11:45	Phosphorus as P	Total	Water	0.062	mg/l	1 ft
RLE-2	07/23/2003	11:28	Phosphorus as P	Total	Water	0.062	mg/l	1 ft
RLE-3	07/23/2003	11:48	Phosphorus as P	Total	Water	0.062	mg/l	1 ft
RLE-1	10/14/2009	11:00	Phosphorus as P	Total	Water	0.061	mg/l	1 ft
DGP-01	8/20/2007	11:40	Phosphorus as P	Dissolved	Water	0.061	mg/l	
DGPC-01	9/25/2007	13:40	Phosphorus as P	Total	Water	0.0584	mg/l	
RLE-2	06/04/2003	11:37	Phosphorus as P	Total	Water	0.057	mg/l	1 ft
RLE-1	07/23/2003	10:36	Phosphorus as P	Total	Water	0.056	mg/l	1 ft
RLE-1	10/14/2009	11:10	Phosphorus as P	Total	Water	0.055	mg/l	9 ft
RLE-1	10/15/2003	11:10	Phosphorus as P	Total	Water	0.053	mg/l	1 ft
RLE-1	06/04/2003	10:48	Phosphorus as P	Total	Water	0.053	mg/l	1 ft
RLE-1	10/15/2003	11:10	Phosphorus as P	Total	Water	0.053	mg/l	7 ft
RLE-3	06/04/2003	12:03	Phosphorus as P	Total	Water	0.053	mg/l	1 ft
RLE-1	06/04/2003	10:48	Phosphorus as P	Total	Water	0.051	mg/l	11 ft
RLE-1	10/15/2003	11:10	Phosphorus as P	Total	Water	0.051	mg/l	14 ft
DGP-01	9/25/2007	12:20	Phosphorus as P	Total	Water	0.05	mg/l	
DGPC-01	9/25/2007	13:40	Phosphorus as P	Dissolved	Water	0.0487	mg/l	
RLE-3	08/07/2003	11:38	Phosphorus as P	Total	Water	0.041	mg/l	1 ft
RLE-1	10/14/2009	11:00	Phosphorus as P	Dissolved	Water	0.04	mg/l	1 ft
RLE-1	08/07/2003	10:41	Phosphorus as P	Total	Water	0.039	mg/l	1 ft
RLE-1	8/11/2009	11:00	Phosphorus as P	Total	Water	0.039	mg/l	1 ft
RLE-2	08/07/2003	11:21	Phosphorus as P	Total	Water	0.038	mg/l	1 ft
DGP-01	9/25/2007	12:20	Phosphorus as P	Dissolved	Water	0.0273	mg/l	
RLE-1	7/22/2009	11:10	Phosphorus as P	Dissolved	Water	0.021	mg/l	9 ft
RLE-1	7/22/2009	10:51	Phosphorus as P	Dissolved	Water	0.019	mg/l	1 ft
RLE-1	10/14/2009	11:20	Phosphorus as P	Dissolved	Water	0.019	mg/l	17 ft
RLE-1	8/11/2009	11:10	Phosphorus as P	Dissolved	Water	0.018	mg/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	10/14/2009	11:10	Phosphorus as P	Dissolved	Water	0.016	mg/l	9 ft
RLE-1	8/11/2009	11:00	Phosphorus as P	Dissolved	Water	0.013	mg/l	1 ft
RLE-1	06/04/2003	10:48	Phosphorus as P	Dissolved	Water	0.011	mg/l	1 ft
RLE-1	06/04/2003	10:48	Phosphorus as P	Dissolved	Water	0.011	mg/l	11 ft
RLE-3	06/04/2003	12:03	Phosphorus as P	Dissolved	Water	0.011	mg/l	1 ft
RLE-1	10/15/2003	11:10	Phosphorus as P	Dissolved	Water	0.01	mg/l	14 ft
RLE-1	07/23/2003	10:36	Phosphorus as P	Dissolved	Water	0.01	mg/l	9 ft
RLE-2	07/23/2003	11:28	Phosphorus as P	Dissolved	Water	0.01	mg/l	1 ft
RLE-2	06/04/2003	11:37	Phosphorus as P	Dissolved	Water	0.01	mg/l	1 ft
RLE-1	07/23/2003	10:36	Phosphorus as P	Dissolved	Water	0.008	mg/l	1 ft
RLE-1	10/15/2003	11:10	Phosphorus as P	Dissolved	Water	0.007	mg/l	7 ft
RLE-3	10/15/2003	12:00	Phosphorus as P	Dissolved	Water	0.007	mg/l	1 ft
RLE-3	07/23/2003	11:48	Phosphorus as P	Dissolved	Water	0.007	mg/l	1 ft
RLE-1	10/15/2003	11:10	Phosphorus as P	Dissolved	Water	0.006	mg/l	1 ft
RLE-2	10/15/2003	11:45	Phosphorus as P	Dissolved	Water	0.006	mg/l	1 ft
RLE-1	08/07/2003	10:41	Phosphorus as P	Dissolved	Water	0.005	mg/l	1 ft
RLE-2	08/07/2003	11:21	Phosphorus as P	Dissolved	Water	0.004	mg/l	1 ft
RLE-1	08/07/2003	10:41	Phosphorus as P	Dissolved	Water	0.003	mg/l	11 ft
RLE-3	08/07/2003	11:38	Phosphorus as P	Dissolved	Water	0.003	mg/l	1 ft
DGLC-01	8/12/2002	15:30	PHOSPHORUS AS P, Dissolved mg/l	Dissolved	Water	0.42	mg/l	
DGO-01	6/11/2002	10:45	PHOSPHORUS AS P, Dissolved mg/l	Dissolved	Water	0.22	mg/l	
DGLC-01	9/11/2002	14:30	PHOSPHORUS AS P, Dissolved mg/l	Dissolved	Water	0.13	mg/l	
DGP-01	6/11/2002	9:00	PHOSPHORUS AS P, Dissolved mg/l	Dissolved	Water	0.08	mg/l	
DGP-01	8/8/2002	12:45	PHOSPHORUS AS P, Dissolved mg/l	Dissolved	Water	0.06	mg/l	
DGLC-01	6/10/2002	9:00	PHOSPHORUS AS P, Dissolved mg/l	Dissolved	Water	0.05	mg/l	
DGP-01	9/11/2002	13:00	PHOSPHORUS AS P, Dissolved mg/l	Dissolved	Water	0.04	mg/l	
DGO-01	6/11/2002	10:45	PHOSPHORUS AS P,Total mg/l	Total	Water	1.76	mg/l	
DGLC-01	8/12/2002	15:30	PHOSPHORUS AS P,Total mg/l	Total	Water	0.65	mg/l	
DGP-01	6/11/2002	9:00	PHOSPHORUS AS P,Total mg/l	Total	Water	0.25	mg/l	
DGLC-01	9/11/2002	14:30	PHOSPHORUS AS P,Total mg/l	Total	Water	0.23	mg/l	
DGLC-01	6/10/2002	9:00	PHOSPHORUS AS P,Total mg/l	Total	Water	0.13	mg/l	
DGP-01	8/8/2002	12:45	PHOSPHORUS AS P,Total mg/l	Total	Water	0.12	mg/l	
DGP-01	9/11/2002	13:00	PHOSPHORUS AS P,Total mg/l	Total	Water	0.08	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	7/18/2012	10:06	Picloram	Total	Water	0.23	ug/l	9 ft
RLE-1	6/11/2012	10:53	Picloram	Total	Water	0.16	ug/l	9 ft
RLE-1	8/22/2012	10:26	Picloram	Total	Water	0.062	ug/l	9 ft
RLE-1	4/17/2012	10:33	Picloram	Total	Water	0.061	ug/l	9 ft
RLE-1	7/22/2009	11:10	Picloram	Total	Water	0.059	ug/l	9 ft
RLE-1	8/11/2009	11:10	Picloram	Total	Water	0.048	ug/l	9 ft
DGLC-BU-E1	9/5/2007	11:10	Potassium	Total	Water	46000	ug/l	
DGLC-BU-C1	9/5/2007	10:00	Potassium	Total	Water	40000	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Potassium	Total	Water	37000	ug/l	
DGLC-01	9/26/2007	12:10	Potassium	Total	Water	29700	ug/l	
DGLC-01	9/26/2007	12:10	Potassium	Dissolved	Water	27800	ug/l	
DGLC-01	9/18/2012	10:14	Potassium	Total	Water	25100	ug/l	
DGLC-01	9/18/2012	10:14	Potassium	Dissolved	Water	24000	ug/l	
DGLC-01	8/22/2007	9:45	Potassium	Total	Water	24000	ug/l	
DGLC-01	8/22/2007	9:45	Potassium	Dissolved	Water	23000	ug/l	
DGLC-01	7/10/2012	8:29	Potassium	Total	Water	13200	ug/l	
DGLC-01	7/10/2012	8:29	Potassium	Dissolved	Water	12400	ug/l	
DGP-01	9/25/2007	12:20	Potassium	Total	Water	7400	ug/l	
DGPC-01	9/25/2007	13:40	Potassium	Total	Water	7100	ug/l	
DGP-01	9/25/2007	12:20	Potassium	Dissolved	Water	7000	ug/l	
DGPC-01	8/20/2007	11:00	Potassium	Total	Water	5900	ug/l	
DGPC-01	9/25/2007	13:40	Potassium	Dissolved	Water	5700	ug/l	
DGPC-01	8/20/2007	11:00	Potassium	Dissolved	Water	5600	ug/l	
DGP-01	8/20/2007	11:40	Potassium	Total	Water	4600	ug/l	
DGP-01	8/20/2007	11:40	Potassium	Dissolved	Water	4400	ug/l	
RLE-1	8/22/2012	10:26	Potassium	Total	Water	4360	ug/l	9 ft
RLE-1	4/14/2009	11:18	Potassium	Total	Water	4330	ug/l	9 ft
DGO-01	8/20/2007	12:20	Potassium	Total	Water	4300	ug/l	
RLE-1	10/14/2009	11:10	Potassium	Total	Water	4180	ug/l	9 ft
DGO-01	8/20/2007	12:20	Potassium	Dissolved	Water	4000	ug/l	
RLE-1	7/18/2012	10:06	Potassium	Total	Water	3940	ug/l	9 ft
RLE-1	6/3/2009	12:05	Potassium	Total	Water	3620	ug/l	9 ft
RLE-1	4/17/2012	10:33	Potassium	Total	Water	3530	ug/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	7/18/2007	10:45	Potassium	Total	Water	3400	ug/l	
RLE-1	6/11/2012	10:53	Potassium	Total	Water	3350	ug/l	9 ft
RLE-1	7/22/2009	11:10	Potassium	Total	Water	3210	ug/l	9 ft
RLE-1	8/11/2009	11:10	Potassium	Total	Water	3110	ug/l	9 ft
DGP-01	9/17/2012	10:59	Potassium	Total	Water	2970	ug/l	
DGP-01	9/17/2012	10:59	Potassium	Dissolved	Water	2900	ug/l	
DGLC-01	7/16/2007	9:45	Potassium	Total	Water	2800	ug/l	
RLE-1	7/22/2009	10:51	Potassium	Total	Sediment	2420	mg/kg	20 ft
RLE-1	07/23/2003	10:36	Potassium		Sediment	1800	mg/kg	19 ft
DGP-01	5/15/2012	11:29	Potassium	Total	Water	1700	ug/l	
RLE-3	07/23/2003	11:48	Potassium		Sediment	1500	mg/kg	15 ft
DGP-01	5/15/2012	11:29	Potassium	Dissolved	Water	1390	ug/l	
DGLC-01	5/14/2012	9:30	Potassium	Total	Water	1320	ug/l	
DGLC-01	5/14/2012	9:30	Potassium	Dissolved	Water	899	ug/l	
DGO-01	5/15/2012	10:45	Potassium	Total	Water	803	ug/l	
DGO-01	5/15/2012	10:45	Potassium	Dissolved	Water	686	ug/l	
RLE-1	04/15/2003	10:30	Potassium	Total	Water	4.6	mg/l	7 ft
RLE-1	10/15/2003	11:10	Potassium	Total	Water	4.4	mg/l	7 ft
RLE-1	06/04/2003	10:48	Potassium	Total	Water	4.3	mg/l	11 ft
RLE-1	08/07/2003	10:41	Potassium	Total	Water	3.9	mg/l	7 ft
RLE-1	07/23/2003	10:36	Potassium	Total	Water	3.9	mg/l	9 ft
DGLC-01	6/10/2002	9:00	POTASSIUM, Dissolved mg/l	Dissolved	Water	8.7	mg/l	
DGO-01	6/11/2002	10:45	POTASSIUM, Dissolved mg/l	Dissolved	Water	5.5	mg/l	
DGP-01	8/8/2002	12:45	POTASSIUM, Dissolved mg/l	Dissolved	Water	4.9	mg/l	
DGLC-01	8/12/2002	15:30	POTASSIUM, Dissolved mg/l	Dissolved	Water	3.3	mg/l	
DGLC-01	9/11/2002	14:30	POTASSIUM, Dissolved mg/l	Dissolved	Water	2.6	mg/l	
DGP-01	9/11/2002	13:00	POTASSIUM, Dissolved mg/l	Dissolved	Water	2.5	mg/l	
DGP-01	6/11/2002	9:00	POTASSIUM, Dissolved mg/l	Dissolved	Water	1.8	mg/l	
DGO-01	6/11/2002	10:45	POTASSIUM,Total mg/l	Total	Water	9	mg/l	
DGP-01	8/8/2002	12:45	POTASSIUM,Total mg/l	Total	Water	4.8	mg/l	
DGLC-01	8/12/2002	15:30	POTASSIUM,Total mg/l	Total	Water	3	mg/l	
DGLC-01	9/11/2002	14:30	POTASSIUM,Total mg/l	Total	Water	3	mg/l	
DGP-01	9/11/2002	13:00	POTASSIUM,Total mg/l	Total	Water	2.7	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	6/11/2002	9:00	POTASSIUM,Total mg/l	Total	Water	1.7	mg/l	
DGLC-01	6/10/2002	9:00	POTASSIUM,Total mg/l	Total	Water	1.4	mg/l	
DGLC-01	9/26/2007	12:10	Silver	Total	Water	5530	ug/l	
DGLC-01	9/26/2007	12:10	Silver	Dissolved	Water	3650	ug/l	
RLE-1	06/04/2003	10:48	Silver	Total	Water	4	ug/l	11 ft
RLE-1	8/11/2009	11:10	Silver	Total	Water	1.08	ug/l	9 ft
DGLC-01	9/18/2012	10:14	Silver	Total	Water	0.89	ug/l	
DGLC-01	9/18/2012	10:14	Silver	Dissolved	Water	0.64	ug/l	
DGLC-01	8/12/2002	15:30	SILVER,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGP-01	8/8/2002	12:45	SILVER,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGLC-01	6/10/2002	9:00	SILVER,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGP-01	6/11/2002	9:00	SILVER,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGO-01	6/11/2002	10:45	SILVER,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGP-01	9/11/2002	13:00	SILVER,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGLC-01	9/11/2002	14:30	SILVER,Dissolved ug/l	Dissolved	Water	3	ug/l	
DGLC-01	8/12/2002	15:30	SILVER,Total ug/l	Total	Water	3	ug/l	
DGP-01	8/8/2002	12:45	SILVER,Total ug/l	Total	Water	3	ug/l	
DGLC-01	6/10/2002	9:00	SILVER,Total ug/l	Total	Water	3	ug/l	
DGP-01	6/11/2002	9:00	SILVER,Total ug/l	Total	Water	3	ug/l	
DGO-01	6/11/2002	10:45	SILVER,Total ug/l	Total	Water	3	ug/l	
DGP-01	9/11/2002	13:00	SILVER,Total ug/l	Total	Water	3	ug/l	
DGLC-01	9/11/2002	14:30	SILVER,Total ug/l	Total	Water	3	ug/l	
DGLC-BU-E1	9/5/2007	11:10	Sodium	Total	Water	1200000	ug/l	
DGLC-BU-C1	9/5/2007	10:00	Sodium	Total	Water	900000	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Sodium	Total	Water	870000	ug/l	
DGLC-01	9/26/2007	12:10	Sodium	Total	Water	732000	ug/l	
DGLC-01	9/18/2012	10:14	Sodium	Total	Water	728000	ug/l	
DGLC-01	9/18/2012	10:14	Sodium	Dissolved	Water	707000	ug/l	
DGLC-01	9/26/2007	12:10	Sodium	Dissolved	Water	693000	ug/l	
DGLC-01	8/22/2007	9:45	Sodium	Total	Water	640000	ug/l	
DGLC-01	8/22/2007	9:45	Sodium	Dissolved	Water	620000	ug/l	
DGLC-01	7/10/2012	8:29	Sodium	Total	Water	161000	ug/l	
DGLC-01	7/10/2012	8:29	Sodium	Dissolved	Water	158000	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	7/16/2007	9:45	Sodium	Total	Water	62000	ug/l	
DGLC-01	6/18/2007	14:15	Sodium	Dissolved	Water	28000	ug/l	
DGLC-01	6/18/2007	14:15	Sodium	Total	Water	26000	ug/l	
DGPC-01	9/25/2007	13:40	Sodium	Dissolved	Water	23000	ug/l	
DGPC-01	8/20/2007	11:00	Sodium	Total	Water	21000	ug/l	
DGPC-01	8/20/2007	11:00	Sodium	Dissolved	Water	20000	ug/l	
DGPC-01	9/25/2007	13:40	Sodium	Total	Water	19000	ug/l	
RLE-1	8/22/2012	10:26	Sodium	Total	Water	15700	ug/l	9 ft
DGLC-01	5/14/2012	9:30	Sodium	Total	Water	14300	ug/l	
RLE-1	7/18/2012	10:06	Sodium	Total	Water	14100	ug/l	9 ft
DGO-01	5/15/2012	10:45	Sodium	Total	Water	13100	ug/l	
DGLC-01	5/14/2012	9:30	Sodium	Dissolved	Water	12800	ug/l	
RLE-1	6/11/2012	10:53	Sodium	Total	Water	12600	ug/l	9 ft
RLE-1	10/14/2009	11:10	Sodium	Total	Water	12500	ug/l	9 ft
DGO-01	5/15/2012	10:45	Sodium	Dissolved	Water	12200	ug/l	
DGO-01	7/3/2007	12:00	Sodium	Total	Water	12000	ug/l	
RLE-1	4/14/2009	11:18	Sodium	Total	Water	11900	ug/l	9 ft
RLE-1	4/17/2012	10:33	Sodium	Total	Water	11800	ug/l	9 ft
DGO-01	7/3/2007	12:00	Sodium	Dissolved	Water	11000	ug/l	
DGP-01	8/20/2007	11:40	Sodium	Dissolved	Water	11000	ug/l	
DGP-01	9/25/2007	12:20	Sodium	Dissolved	Water	11000	ug/l	
DGPC-01	6/12/2007	9:00	Sodium	Total	Water	11000	ug/l	
DGO-01	8/20/2007	12:20	Sodium	Total	Water	11000	ug/l	
DGP-01	8/20/2007	11:40	Sodium	Total	Water	11000	ug/l	
RLE-1	8/11/2009	11:10	Sodium	Total	Water	10800	ug/l	9 ft
DGP-01	9/17/2012	10:59	Sodium	Total	Water	10800	ug/l	
DGP-01	9/17/2012	10:59	Sodium	Dissolved	Water	10700	ug/l	
RLE-1	7/22/2009	11:10	Sodium	Total	Water	10500	ug/l	9 ft
DGPC-01	6/12/2007	9:00	Sodium	Dissolved	Water	10000	ug/l	
DGO-01	8/20/2007	12:20	Sodium	Dissolved	Water	10000	ug/l	
DGP-01	9/25/2007	12:20	Sodium	Total	Water	10000	ug/l	
RLE-1	6/3/2009	12:05	Sodium	Total	Water	8970	ug/l	9 ft
DGP-01	5/15/2012	11:29	Sodium	Total	Water	8880	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	7/18/2007	10:45	Sodium	Total	Water	8600	ug/l	
DGP-01	5/15/2012	11:29	Sodium	Dissolved	Water	8580	ug/l	
RLE-1	06/04/2003	10:48	Sodium	Total	Water	13	mg/l	11 ft
RLE-1	04/15/2003	10:30	Sodium	Total	Water	12	mg/l	7 ft
RLE-1	10/15/2003	11:10	Sodium	Total	Water	12	mg/l	7 ft
RLE-1	08/07/2003	10:41	Sodium	Total	Water	12	mg/l	7 ft
RLE-1	07/23/2003	10:36	Sodium	Total	Water	11	mg/l	9 ft
DGLC-01	8/12/2002	15:30	SODIUM,Dissolved mg/l	Dissolved	Water	74	mg/l	
DGLC-01	9/11/2002	14:30	SODIUM,Dissolved mg/l	Dissolved	Water	56	mg/l	
DGLC-01	6/10/2002	9:00	SODIUM,Dissolved mg/l	Dissolved	Water	18	mg/l	
DGP-01	8/8/2002	12:45	SODIUM,Dissolved mg/l	Dissolved	Water	11	mg/l	
DGP-01	9/11/2002	13:00	SODIUM,Dissolved mg/l	Dissolved	Water	9.5	mg/l	
DGP-01	6/11/2002	9:00	SODIUM,Dissolved mg/l	Dissolved	Water	8.1	mg/l	
DGO-01	6/11/2002	10:45	SODIUM,Dissolved mg/l	Dissolved	Water	4.7	mg/l	
DGLC-01	8/12/2002	15:30	SODIUM,Total mg/l	Total	Water	78	mg/l	
DGLC-01	9/11/2002	14:30	SODIUM,Total mg/l	Total	Water	57	mg/l	
DGP-01	8/8/2002	12:45	SODIUM,Total mg/l	Total	Water	12	mg/l	
DGLC-01	6/10/2002	9:00	SODIUM,Total mg/l	Total	Water	11	mg/l	
DGP-01	9/11/2002	13:00	SODIUM,Total mg/l	Total	Water	9.3	mg/l	
DGP-01	6/11/2002	9:00	SODIUM,Total mg/l	Total	Water	8.1	mg/l	
DGO-01	6/11/2002	10:45	SODIUM,Total mg/l	Total	Water	5.4	mg/l	
RLE-1	4/14/2009	11:08	Solids, Dissolved	Dissolved	Water	216	mg/l	1 ft
RLE-1	4/14/2009	11:18	Solids, Dissolved	Dissolved	Water	200	mg/l	9 ft
RLE-1	7/22/2009	11:10	Solids, Dissolved	Dissolved	Water	188	mg/l	9 ft
RLE-1	6/3/2009	12:05	Solids, Dissolved	Dissolved	Water	182	mg/l	9 ft
RLE-1	4/14/2009	11:28	Solids, Dissolved	Dissolved	Water	182	mg/l	18 ft
RLE-1	10/14/2009	11:10	Solids, Dissolved	Dissolved	Water	178	mg/l	9 ft
RLE-1	8/11/2009	11:10	Solids, Dissolved	Dissolved	Water	148	mg/l	9 ft
RLE-3	07/23/2003	11:48	Solids, Fixed	Non-volatile	Sediment	16.7	%	15 ft
RLE-1	07/23/2003	10:36	Solids, Fixed	Volatile	Sediment	14.5	%	19 ft
RLE-1	07/23/2003	10:36	Solids, Fixed	Non-volatile	Sediment	11.5	%	19 ft
RLE-3	07/23/2003	11:48	Solids, Fixed	Volatile	Sediment	11.3	%	15 ft
DGLC-01	8/12/2002	15:30	SOLIDS, FIXED		Water	503	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	9/11/2002	14:30	SOLIDS, FIXED		Water	429	mg/l	
DGP-01	9/11/2002	13:00	SOLIDS, FIXED		Water	344	mg/l	
DGLC-01	6/10/2002	9:00	SOLIDS, FIXED		Water	322	mg/l	
DGP-01	8/8/2002	12:45	SOLIDS, FIXED		Water	315	mg/l	
DGP-01	6/11/2002	9:00	SOLIDS, FIXED		Water	290	mg/l	
DGO-01	6/11/2002	10:45	SOLIDS, FIXED		Water	110	mg/l	
DGO-01	6/11/2002	10:45	SOLIDS, FIXED,Total mg/l	Total	Water	1450	mg/l	
DGP-01	6/11/2002	9:00	SOLIDS, FIXED,Total mg/l	Total	Water	181	mg/l	
DGLC-01	6/10/2002	9:00	SOLIDS, FIXED,Total mg/l	Total	Water	101	mg/l	
DGLC-01	8/12/2002	15:30	SOLIDS, FIXED,Total mg/l	Total	Water	62	mg/l	
DGLC-01	9/11/2002	14:30	SOLIDS, FIXED,Total mg/l	Total	Water	50	mg/l	
DGP-01	8/8/2002	12:45	SOLIDS, FIXED,Total mg/l	Total	Water	18	mg/l	
DGP-01	9/11/2002	13:00	SOLIDS, FIXED,Total mg/l	Total	Water	13	mg/l	
DGO-01	6/11/2002	10:45	SOLIDS, FIXED, Volatile mg/l	Volatile	Water	158	mg/l	
DGP-01	6/11/2002	9:00	SOLIDS, FIXED, Volatile mg/l	Volatile	Water	20	mg/l	
DGLC-01	8/12/2002	15:30	SOLIDS, FIXED, Volatile mg/l	Volatile	Water	12	mg/l	
DGLC-01	9/11/2002	14:30	SOLIDS, FIXED, Volatile mg/l	Volatile	Water	11	mg/l	
DGLC-01	6/10/2002	9:00	SOLIDS, FIXED, Volatile mg/l	Volatile	Water	9	mg/l	
DGP-01	8/8/2002	12:45	SOLIDS, FIXED, Volatile mg/l	Volatile	Water	5	mg/l	
DGP-01	9/11/2002	13:00	SOLIDS, FIXED, Volatile mg/l	Volatile	Water	5	mg/l	
DGLC-01	8/22/2007	9:45	Solids, suspended, volatile		Water	61.5	mg/l	
DGLC-BU-C1	9/5/2007	10:00	Solids, suspended, volatile		Water	43	mg/l	
DGLC-BU-C2	9/5/2007	11:45	Solids, suspended, volatile		Water	42	mg/l	
DGLC-BU-E1	9/5/2007	11:10	Solids, suspended, volatile		Water	29	mg/l	
RLE-1	8/11/2009	11:25	Solids, suspended, volatile		Water	15	mg/l	16 ft
RLE-1	7/22/2009	10:59	Solids, suspended, volatile		Water	13	mg/l	18 ft
RLE-1	7/22/2009	10:51	Solids, suspended, volatile		Water	11	mg/l	1 ft
RLE-1	8/11/2009	11:10	Solids, suspended, volatile		Water	10	mg/l	9 ft
RLE-1	8/11/2009	11:00	Solids, suspended, volatile		Water	9	mg/l	1 ft
RLE-1	4/14/2009	11:28	Solids, suspended, volatile		Water	9	mg/l	18 ft
RLE-1	6/3/2009	11:40	Solids, suspended, volatile		Water	8	mg/l	17 ft
RLE-1	7/22/2009	11:10	Solids, suspended, volatile		Water	7	mg/l	9 ft
DGLC-01	9/26/2007	12:10	Solids, suspended, volatile		Water	7	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	4/14/2009	11:08	Solids, suspended, volatile		Water	6	mg/l	1 ft
RLE-1	4/14/2009	11:18	Solids, suspended, volatile		Water	6	mg/l	9 ft
RLE-1	10/14/2009	11:20	Solids, suspended, volatile		Water	6	mg/l	17 ft
DGO-01	8/20/2007	12:20	Solids, suspended, volatile		Water	6	mg/l	
DGLC-01	6/18/2007	14:15	Solids, suspended, volatile		Water	5.5	mg/l	
RLE-1	10/14/2009	11:00	Solids, suspended, volatile		Water	5	mg/l	1 ft
RLE-1	10/14/2009	11:10	Solids, suspended, volatile		Water	5	mg/l	9 ft
DGP-01	8/20/2007	11:40	Solids, suspended, volatile		Water	5	mg/l	
DGPC-01	8/20/2007	11:00	Solids, suspended, volatile		Water	4.5	mg/l	
DGP-01	9/25/2007	12:20	Solids, suspended, volatile		Water	4.5	mg/l	
RLE-1	6/3/2009	11:30	Solids, suspended, volatile		Water	4	mg/l	1 ft
RLE-1	6/3/2009	12:05	Solids, suspended, volatile		Water	4	mg/l	9 ft
DGPC-01	9/25/2007	13:40	Solids, suspended, volatile		Water	4	mg/l	
DGP-01	7/16/2007	11:00	Solids, suspended, volatile		Water	4	mg/l	
DGLC-01	7/16/2007	9:45	Solids, suspended, volatile		Water	1.5	mg/l	
DGP-01	7/18/2007	10:45	Solids, suspended, volatile		Water	1	mg/l	
DGLC-01	8/22/2007	9:45	Solids, Total Suspended (TSS)		Water	118	mg/l	
DGLC-BU-C1	9/5/2007	10:00	Solids, Total Suspended (TSS)		Water	65	mg/l	
DGLC-BU-C2	9/5/2007	11:45	Solids, Total Suspended (TSS)		Water	62	mg/l	
RLE-1	06/04/2003	10:48	Solids, Total Suspended (TSS)	Non-filterable	Water	61	mg/l	18 ft
DGLC-BU-C2	9/5/2007	11:45	Solids, Total Suspended (TSS)		Water	54	mg/l	
RLE-1	07/23/2003	10:36	Solids, Total Suspended (TSS)	Non-filterable	Water	52	mg/l	17 ft
RLE-1	8/11/2009	11:25	Solids, Total Suspended (TSS)		Water	52	mg/l	16 ft
DGLC-BU-C1	9/5/2007	10:00	Solids, Total Suspended (TSS)		Water	44	mg/l	
RLE-1	7/22/2009	10:59	Solids, Total Suspended (TSS)		Water	42	mg/l	18 ft
DGLC-BU-E1	9/5/2007	11:10	Solids, Total Suspended (TSS)		Water	36	mg/l	
DGLC-BU-E1	9/5/2007	11:10	Solids, Total Suspended (TSS)		Water	35	mg/l	
RLE-1	6/3/2009	11:40	Solids, Total Suspended (TSS)		Water	24	mg/l	17 ft
DGP-01	7/18/2007	10:45	Solids, Total Suspended (TSS)		Water	23	mg/l	
DGLC-01	9/26/2007	12:10	Solids, Total Suspended (TSS)		Water	23	mg/l	
RLE-1	4/14/2009	11:28	Solids, Total Suspended (TSS)		Water	20	mg/l	18 ft
RLE-2	10/15/2003	11:45	Solids, Total Suspended (TSS)	Non-filterable	Water	19	mg/l	1 ft
RLE-3	10/15/2003	12:00	Solids, Total Suspended (TSS)	Non-filterable	Water	19	mg/l	1 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-3	08/07/2003	11:38	Solids, Total Suspended (TSS)	Non-filterable	Water	19	mg/l	1 ft
RLE-1	08/07/2003	10:41	Solids, Total Suspended (TSS)	Non-filterable	Water	18	mg/l	11 ft
DGPC-01	8/20/2007	11:00	Solids, Total Suspended (TSS)		Water	17.5	mg/l	
RLE-1	08/07/2003	10:41	Solids, Total Suspended (TSS)	Non-filterable	Water	17	mg/l	1 ft
RLE-1	10/14/2009	11:20	Solids, Total Suspended (TSS)		Water	17	mg/l	17 ft
RLE-1	10/15/2003	11:10	Solids, Total Suspended (TSS)	Non-filterable	Water	16	mg/l	7 ft
RLE-1	4/14/2009	11:18	Solids, Total Suspended (TSS)		Water	16	mg/l	9 ft
RLE-3	07/23/2003	11:48	Solids, Total Suspended (TSS)	Non-filterable	Water	16	mg/l	1 ft
RLE-1	10/15/2003	11:10	Solids, Total Suspended (TSS)	Non-filterable	Water	15	mg/l	1 ft
RLE-1	06/04/2003	10:48	Solids, Total Suspended (TSS)	Non-filterable	Water	15	mg/l	11 ft
RLE-1	10/15/2003	11:10	Solids, Total Suspended (TSS)	Non-filterable	Water	15	mg/l	14 ft
RLE-1	7/22/2009	11:10	Solids, Total Suspended (TSS)		Water	15	mg/l	9 ft
RLE-3	06/04/2003	12:03	Solids, Total Suspended (TSS)	Non-filterable	Water	15	mg/l	1 ft
RLE-1	7/22/2009	10:51	Solids, Total Suspended (TSS)		Water	14	mg/l	1 ft
RLE-1	8/11/2009	11:10	Solids, Total Suspended (TSS)		Water	14	mg/l	9 ft
RLE-2	08/07/2003	11:21	Solids, Total Suspended (TSS)	Non-filterable	Water	14	mg/l	1 ft
DGO-01	8/20/2007	12:20	Solids, Total Suspended (TSS)		Water	14	mg/l	
RLE-1	08/07/2003	10:41	Solids, Total Suspended (TSS)	Non-filterable	Water	13	mg/l	7 ft
RLE-1	07/23/2003	10:36	Solids, Total Suspended (TSS)	Non-filterable	Water	13	mg/l	9 ft
RLE-1	4/14/2009	11:08	Solids, Total Suspended (TSS)		Water	13	mg/l	1 ft
RLE-1	6/3/2009	12:05	Solids, Total Suspended (TSS)		Water	13	mg/l	9 ft
DGLC-01	6/18/2007	14:15	Solids, Total Suspended (TSS)		Water	13	mg/l	
RLE-1	06/04/2003	10:48	Solids, Total Suspended (TSS)	Non-filterable	Water	11	mg/l	1 ft
RLE-1	10/14/2009	11:00	Solids, Total Suspended (TSS)		Water	11	mg/l	1 ft
RLE-3	04/15/2003	11:20	Solids, Total Suspended (TSS)	Non-filterable	Water	11	mg/l	1 ft
DGP-01	8/20/2007	11:40	Solids, Total Suspended (TSS)		Water	10.5	mg/l	
RLE-1	10/14/2009	11:10	Solids, Total Suspended (TSS)		Water	10	mg/l	9 ft
RLE-2	07/23/2003	11:28	Solids, Total Suspended (TSS)	Non-filterable	Water	10	mg/l	1 ft
RLE-2	06/04/2003	11:37	Solids, Total Suspended (TSS)	Non-filterable	Water	10	mg/l	1 ft
DGP-01	9/17/2007	10:45	Solids, Total Suspended (TSS)		Water	10	mg/l	
RLE-1	04/15/2003	10:30	Solids, Total Suspended (TSS)	Non-filterable	Water	9	mg/l	11 ft
RLE-1	07/23/2003	10:36	Solids, Total Suspended (TSS)	Non-filterable	Water	8	mg/l	1 ft
RLE-1	6/3/2009	11:30	Solids, Total Suspended (TSS)		Water	8	mg/l	1 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	8/11/2009	11:00	Solids, Total Suspended (TSS)		Water	8	mg/l	1 ft
DGP-01	7/16/2007	11:00	Solids, Total Suspended (TSS)		Water	8	mg/l	
DGPC-01	9/25/2007	13:40	Solids, Total Suspended (TSS)		Water	7	mg/l	
DGP-01	9/25/2007	12:20	Solids, Total Suspended (TSS)		Water	6.5	mg/l	
RLE-1	04/15/2003	10:30	Solids, Total Suspended (TSS)	Non-filterable	Water	6	mg/l	1 ft
RLE-2	04/15/2003	11:06	Solids, Total Suspended (TSS)	Non-filterable	Water	6	mg/l	1 ft
DGO-01	7/3/2007	12:00	Solids, Total Suspended (TSS)		Water	6	mg/l	
DGLC-01	7/16/2007	9:45	Solids, Total Suspended (TSS)		Water	4.5	mg/l	
DGP-01	9/25/2007	10:45	Solids, Total Suspended (TSS)		Water	4.5	mg/l	
RLE-1	04/15/2003	10:30	Solids, Total Suspended (TSS)	Non-filterable	Water	4	mg/l	7 ft
RLE-1	08/07/2003	10:41	Solids, Volatile	Filterable	Water	17	mg/l	1 ft
RLE-3	08/07/2003	11:38	Solids, Volatile	Filterable	Water	14	mg/l	1 ft
RLE-1	07/23/2003	10:36	Solids, Volatile	Filterable	Water	13	mg/l	17 ft
RLE-1	06/04/2003	10:48	Solids, Volatile	Filterable	Water	12	mg/l	18 ft
RLE-2	08/07/2003	11:21	Solids, Volatile	Filterable	Water	10	mg/l	1 ft
RLE-3	07/23/2003	11:48	Solids, Volatile	Filterable	Water	9	mg/l	1 ft
RLE-1	07/23/2003	10:36	Solids, Volatile	Filterable	Water	8	mg/l	9 ft
RLE-2	07/23/2003	11:28	Solids, Volatile	Filterable	Water	8	mg/l	1 ft
RLE-1	07/23/2003	10:36	Solids, Volatile	Filterable	Water	6	mg/l	1 ft
RLE-1	06/04/2003	10:48	Solids, Volatile	Filterable	Water	6	mg/l	1 ft
RLE-1	06/04/2003	10:48	Solids, Volatile	Filterable	Water	6	mg/l	11 ft
RLE-2	10/15/2003	11:45	Solids, Volatile	Filterable	Water	6	mg/l	1 ft
RLE-2	06/04/2003	11:37	Solids, Volatile	Filterable	Water	6	mg/l	1 ft
RLE-3	06/04/2003	12:03	Solids, Volatile	Filterable	Water	6	mg/l	1 ft
RLE-1	10/15/2003	11:10	Solids, Volatile	Filterable	Water	5	mg/l	1 ft
RLE-1	04/15/2003	10:30	Solids, Volatile	Filterable	Water	5	mg/l	11 ft
RLE-1	10/15/2003	11:10	Solids, Volatile	Filterable	Water	5	mg/l	14 ft
RLE-1	10/15/2003	11:10	Solids, Volatile	Filterable	Water	4	mg/l	7 ft
RLE-3	10/15/2003	12:00	Solids, Volatile	Filterable	Water	4	mg/l	1 ft
RLE-3	04/15/2003	11:20	Solids, Volatile	Filterable	Water	4	mg/l	1 ft
RLE-1	04/15/2003	10:30	Solids, Volatile	Filterable	Water	3	mg/l	1 ft
RLE-1	04/15/2003	10:30	Solids, Volatile	Filterable	Water	3	mg/l	7 ft
RLE-1	08/07/2003	10:41	Solids, Volatile	Filterable	Water	2	mg/l	11 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	08/07/2003	10:41	Solids, Volatile	Filterable	Water	2	mg/l	7 ft
RLE-2	04/15/2003	11:06	Solids, Volatile	Filterable	Water	2	mg/l	1 ft
DGLC-BU-E1	9/5/2007	11:10	Specific conductance		Water	5220	umho/cm	
DGLC-BU-C1	9/5/2007	10:00	Specific conductance		Water	4800	umho/cm	
DGLC-BU-C2	9/5/2007	11:45	Specific conductance		Water	4700	umho/cm	
DGLC-01	9/26/2007	12:10	Specific conductance		Water	4440	umho/cm	
DGLC-01	9/18/2012	10:15	Specific conductance		Water	4420	umho/cm	
DGLC-01	8/22/2007	9:45	Specific conductance		Water	3760	umho/cm	
DGLC-01	7/10/2012	8:30	Specific conductance		Water	1456	umho/cm	
DGLC-01	7/16/2007	9:45	Specific conductance		Water	854	umho/cm	
DGPC-01	9/25/2007	13:40	Specific conductance		Water	690	umho/cm	
DGPC-01	8/20/2007	11:00	Specific conductance		Water	677	umho/cm	
DGLC-01	6/18/2007	14:15	Specific conductance		Water	643	umho/cm	
DGP-01	8/20/2007	11:40	Specific conductance		Water	590	umho/cm	
DGO-01	8/20/2007	12:20	Specific conductance		Water	561	umho/cm	
DGPC-01	6/12/2007	9:00	Specific conductance		Water	558	umho/cm	
DGLC-01	5/14/2012	9:30	Specific conductance		Water	549	umho/cm	
DGP-01	9/25/2007	12:20	Specific conductance		Water	529	umho/cm	
DGP-01	5/15/2012	11:30	Specific conductance		Water	515	umho/cm	
DGO-01	7/3/2007	12:00	Specific conductance		Water	499	umho/cm	
DGP-01	7/18/2007	10:45	Specific conductance		Water	496	umho/cm	
DGP-01	9/17/2012	11:00	Specific conductance		Water	480	umho/cm	
DGO-01	5/15/2012	10:45	Specific conductance		Water	424	umho/cm	
RLE-1	07/23/2003	10:36	Specific conductance		Water	383	umho/cm	17 ft
RLE-1	06/04/2003	10:48	Specific conductance		Water	330	umho/cm	18 ft
RLE-1	06/04/2003	10:48	Specific conductance		Water	315	umho/cm	1 ft
RLE-1	06/04/2003	10:48	Specific conductance		Water	314	umho/cm	11 ft
RLE-2	06/04/2003	11:37	Specific conductance		Water	314	umho/cm	1 ft
RLE-1	08/07/2003	10:41	Specific conductance		Water	310	umho/cm	11 ft
RLE-3	06/04/2003	12:03	Specific conductance		Water	310	umho/cm	1 ft
RLE-2	04/15/2003	11:06	Specific conductance		Water	277	umho/cm	1 ft
RLE-1	10/15/2003	11:10	Specific conductance		Water	274	umho/cm	14 ft
RLE-2	10/15/2003	11:45	Specific conductance		Water	273	umho/cm	1 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-3	10/15/2003	12:00	Specific conductance		Water	273	umho/cm	1 ft
RLE-1	10/15/2003	11:10	Specific conductance		Water	272	umho/cm	7 ft
RLE-1	10/15/2003	11:10	Specific conductance		Water	271	umho/cm	1 ft
RLE-1	04/15/2003	10:30	Specific conductance		Water	271	umho/cm	1 ft
RLE-3	04/15/2003	11:20	Specific conductance		Water	270	umho/cm	1 ft
RLE-1	04/15/2003	10:30	Specific conductance		Water	269	umho/cm	11 ft
RLE-1	04/15/2003	10:30	Specific conductance		Water	269	umho/cm	7 ft
RLE-1	07/23/2003	10:36	Specific conductance		Water	255	umho/cm	9 ft
RLE-1	08/07/2003	10:41	Specific conductance		Water	254	umho/cm	7 ft
RLE-1	07/23/2003	10:36	Specific conductance		Water	249	umho/cm	1 ft
RLE-2	07/23/2003	11:28	Specific conductance		Water	245	umho/cm	1 ft
RLE-3	07/23/2003	11:48	Specific conductance		Water	245	umho/cm	1 ft
RLE-3	08/07/2003	11:38	Specific conductance		Water	234	umho/cm	1 ft
RLE-2	08/07/2003	11:21	Specific conductance		Water	231	umho/cm	1 ft
RLE-1	08/07/2003	10:41	Specific conductance		Water	230	umho/cm	1 ft
DGLC-BU-E1	9/5/2007	11:10	Strontium	Total	Water	6100	ug/l	
DGLC-BU-C1	9/5/2007	10:00	Strontium	Total	Water	5400	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Strontium	Total	Water	4900	ug/l	
DGLC-01	9/18/2012	10:14	Strontium	Total	Water	3510	ug/l	
DGLC-01	9/18/2012	10:14	Strontium	Dissolved	Water	3430	ug/l	
DGLC-01	8/22/2007	9:45	Strontium	Total	Water	3200	ug/l	
DGLC-01	8/22/2007	9:45	Strontium	Dissolved	Water	2900	ug/l	
DGLC-01	9/26/2007	12:10	Strontium	Dissolved	Water	1000	ug/l	
DGLC-01	9/26/2007	12:10	Strontium	Total	Water	1000	ug/l	
DGLC-01	7/10/2012	8:29	Strontium	Total	Water	933	ug/l	
DGLC-01	7/10/2012	8:29	Strontium	Dissolved	Water	886	ug/l	
DGLC-01	7/16/2007	9:45	Strontium	Total	Water	460	ug/l	
DGPC-01	9/25/2007	13:40	Strontium	Total	Water	290	ug/l	
DGLC-01	6/18/2007	14:15	Strontium	Dissolved	Water	240	ug/l	
DGPC-01	9/25/2007	13:40	Strontium	Dissolved	Water	240	ug/l	
DGLC-01	6/18/2007	14:15	Strontium	Total	Water	240	ug/l	
DGPC-01	8/20/2007	11:00	Strontium	Dissolved	Water	230	ug/l	
DGPC-01	8/20/2007	11:00	Strontium	Total	Water	220	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGO-01	7/3/2007	12:00	Strontium	Dissolved	Water	200	ug/l	
DGP-01	9/17/2012	10:59	Strontium	Total	Water	193	ug/l	
DGP-01	9/17/2012	10:59	Strontium	Dissolved	Water	192	ug/l	
DGO-01	8/20/2007	12:20	Strontium	Dissolved	Water	190	ug/l	
DGO-01	8/20/2007	12:20	Strontium	Total	Water	190	ug/l	
DGP-01	9/25/2007	12:20	Strontium	Total	Water	190	ug/l	
DGP-01	8/20/2007	11:40	Strontium	Dissolved	Water	180	ug/l	
DGO-01	7/3/2007	12:00	Strontium	Total	Water	170	ug/l	
DGP-01	8/20/2007	11:40	Strontium	Total	Water	170	ug/l	
DGLC-01	5/14/2012	9:30	Strontium	Total	Water	163	ug/l	
DGO-01	5/15/2012	10:45	Strontium	Total	Water	161	ug/l	
DGP-01	9/25/2007	12:20	Strontium	Dissolved	Water	160	ug/l	
DGPC-01	6/12/2007	9:00	Strontium	Total	Water	160	ug/l	
DGO-01	5/15/2012	10:45	Strontium	Dissolved	Water	151	ug/l	
DGPC-01	6/12/2007	9:00	Strontium	Dissolved	Water	150	ug/l	
DGLC-01	5/14/2012	9:30	Strontium	Dissolved	Water	147	ug/l	
DGP-01	5/15/2012	11:29	Strontium	Total	Water	146	ug/l	
DGP-01	5/15/2012	11:29	Strontium	Dissolved	Water	141	ug/l	
DGP-01	7/18/2007	10:45	Strontium	Total	Water	140	ug/l	
RLE-1	8/22/2012	10:26	Strontium	Total	Water	121	ug/l	9 ft
RLE-1	6/11/2012	10:53	Strontium	Total	Water	120	ug/l	9 ft
RLE-1	7/18/2012	10:06	Strontium	Total	Water	112	ug/l	9 ft
RLE-1	06/04/2003	10:48	Strontium	Total	Water	110	ug/l	11 ft
RLE-1	10/14/2009	11:10	Strontium	Total	Water	108	ug/l	9 ft
RLE-1	4/17/2012	10:33	Strontium	Total	Water	107	ug/l	9 ft
RLE-1	8/11/2009	11:10	Strontium	Total	Water	103	ug/l	9 ft
RLE-1	04/15/2003	10:30	Strontium	Total	Water	100	ug/l	7 ft
RLE-1	10/15/2003	11:10	Strontium	Total	Water	100	ug/l	7 ft
RLE-1	7/22/2009	11:10	Strontium	Total	Water	99.6	ug/l	9 ft
RLE-1	4/14/2009	11:18	Strontium	Total	Water	93.6	ug/l	9 ft
RLE-1	08/07/2003	10:41	Strontium	Total	Water	92	ug/l	7 ft
RLE-1	6/3/2009	12:05	Strontium	Total	Water	89	ug/l	9 ft
RLE-1	07/23/2003	10:36	Strontium	Total	Water	82	ug/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	6/10/2002	9:00	STRONTIUM,Dissolved ug/l	Dissolved	Water	4800	ug/l	
DGLC-01	8/12/2002	15:30	STRONTIUM,Dissolved ug/l	Dissolved	Water	190	ug/l	
DGLC-01	9/11/2002	14:30	STRONTIUM,Dissolved ug/l	Dissolved	Water	180	ug/l	
DGP-01	9/11/2002	13:00	STRONTIUM,Dissolved ug/l	Dissolved	Water	160	ug/l	
DGP-01	8/8/2002	12:45	STRONTIUM,Dissolved ug/l	Dissolved	Water	150	ug/l	
DGP-01	6/11/2002	9:00	STRONTIUM,Dissolved ug/l	Dissolved	Water	140	ug/l	
DGO-01	6/11/2002	10:45	STRONTIUM,Dissolved ug/l	Dissolved	Water	65	ug/l	
DGLC-01	8/12/2002	15:30	STRONTIUM,Total ug/l	Total	Water	210	ug/l	
DGLC-01	9/11/2002	14:30	STRONTIUM,Total ug/l	Total	Water	180	ug/l	
DGP-01	8/8/2002	12:45	STRONTIUM,Total ug/l	Total	Water	160	ug/l	
DGLC-01	6/10/2002	9:00	STRONTIUM,Total ug/l	Total	Water	160	ug/l	
DGP-01	9/11/2002	13:00	STRONTIUM,Total ug/l	Total	Water	160	ug/l	
DGP-01	6/11/2002	9:00	STRONTIUM,Total ug/l	Total	Water	140	ug/l	
DGO-01	6/11/2002	10:45	STRONTIUM,Total ug/l	Total	Water	120	ug/l	
DGLC-BU-E1	9/5/2007	11:10	Sulfate	Total	Water	1230	mg/l	
DGLC-BU-C1	9/5/2007	10:00	Sulfate	Total	Water	1140	mg/l	
DGLC-BU-C2	9/5/2007	11:45	Sulfate	Total	Water	1090	mg/l	
DGLC-01	9/26/2007	12:10	Sulfate	Total	Water	1090	mg/l	
DGLC-01	9/18/2012	10:14	Sulfate	Total	Water	902	mg/l	
DGLC-01	8/22/2007	9:45	Sulfate	Total	Water	863	mg/l	
DGLC-01	7/10/2012	8:29	Sulfate	Total	Water	185	mg/l	
DGLC-01	7/16/2007	9:45	Sulfate	Total	Water	97.8	mg/l	
DGLC-01	6/18/2007	14:15	Sulfate	Total	Water	60	mg/l	
DGO-01	7/3/2007	12:00	Sulfate	Total	Water	26.9	mg/l	
DGP-01	7/18/2007	10:45	Sulfate	Total	Water	25.1	mg/l	
RLE-1	4/17/2012	10:33	Sulfate	Total	Water	23.3	mg/l	9 ft
DGPC-01	6/12/2007	9:00	Sulfate	Total	Water	22.1	mg/l	
DGO-01	8/20/2007	12:20	Sulfate	Total	Water	16	mg/l	
RLE-1	4/14/2009	11:18	Sulfate	Total	Water	15.9	mg/l	9 ft
DGP-01	8/20/2007	11:40	Sulfate	Total	Water	15.9	mg/l	
DGLC-01	5/14/2012	9:30	Sulfate	Total	Water	14.4	mg/l	
RLE-1	6/11/2012	10:53	Sulfate	Total	Water	13.3	mg/l	9 ft
DGP-01	9/25/2007	12:20	Sulfate	Total	Water	13.1	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	10/14/2009	11:10	Sulfate	Total	Water	11.8	mg/l	9 ft
RLE-1	7/22/2009	11:10	Sulfate	Total	Water	11.5	mg/l	9 ft
RLE-1	8/22/2012	10:26	Sulfate	Total	Water	11.3	mg/l	9 ft
RLE-1	8/11/2009	11:10	Sulfate	Total	Water	11.3	mg/l	9 ft
RLE-1	6/3/2009	12:05	Sulfate	Total	Water	11	mg/l	9 ft
DGO-01	5/15/2012	10:45	Sulfate	Total	Water	10.5	mg/l	
DGP-01	5/15/2012	11:29	Sulfate	Total	Water	9.58	mg/l	
DGPC-01	8/20/2007	11:00	Sulfate	Total	Water	6.94	mg/l	
DGPC-01	9/25/2007	13:40	Sulfate	Total	Water	5.26	mg/l	
RLE-1	7/18/2012	10:06	Sulfate	Total	Water	5.01	mg/l	9 ft
DGLC-01	8/12/2002	15:30	SULFATE		Water	222	mg/l	
DGLC-01	9/11/2002	14:30	SULFATE		Water	80	mg/l	
DGP-01	8/8/2002	12:45	SULFATE		Water	79.9	mg/l	
DGLC-01	6/10/2002	9:00	SULFATE		Water	16.5	mg/l	
DGP-01	9/11/2002	13:00	SULFATE		Water	13.7	mg/l	
DGP-01	6/11/2002	9:00	SULFATE		Water	10.3	mg/l	
DGO-01	6/11/2002	10:45	SULFATE		Water	10	mg/l	
DGP-01	7/18/2007	10:45	Temperature, air		Water	31	deg C	
DGLC-01	8/22/2007	9:45	Temperature, air		Water	30	deg C	
DGLC-BU-E1	9/5/2007	11:10	Temperature, air		Water	30	deg C	
DGO-01	7/3/2007	12:00	Temperature, air		Water	30	deg C	
DGLC-BU-C1	9/5/2007	10:00	Temperature, air		Water	29	deg C	
DGO-01	5/15/2012	10:45	Temperature, air		Water	28	deg C	
DGP-01	5/15/2012	11:30	Temperature, air		Water	28	deg C	
DGLC-01	6/18/2007	14:15	Temperature, air		Water	28	deg C	
DGLC-01	7/10/2012	8:30	Temperature, air		Water	25	deg C	
DGO-01	8/20/2007	12:20	Temperature, air		Water	24	deg C	
DGP-01	8/20/2007	11:40	Temperature, air		Water	24	deg C	
DGP-01	9/25/2007	12:20	Temperature, air		Water	24	deg C	
DGPC-01	6/12/2007	9:00	Temperature, air		Water	24	deg C	
DGPC-01	8/20/2007	11:00	Temperature, air		Water	24	deg C	
DGLC-01	7/16/2007	9:45	Temperature, air		Water	22	deg C	
DGLC-01	5/14/2012	9:30	Temperature, air		Water	21	deg C	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	9/26/2007	12:10	Temperature, air		Water	20	deg C	
DGPC-01	9/25/2007	13:40	Temperature, air		Water	20	deg C	
DGP-01	9/17/2012	11:00	Temperature, air		Water	19	deg C	
DGLC-01	9/18/2012	10:15	Temperature, air		Water	14	deg C	
DGLC-01	8/12/2002	15:30	TEMPERATURE, AIR deg C		Water	31	deg C	
DGP-01	8/8/2002	12:45	TEMPERATURE, AIR deg C		Water	28	deg C	
DGLC-01	6/10/2002	9:00	TEMPERATURE, AIR deg C		Water	25	deg C	
DGP-01	9/11/2002	13:00	TEMPERATURE, AIR deg C		Water	24	deg C	
DGLC-01	9/11/2002	14:30	TEMPERATURE, AIR deg C		Water	24	deg C	
DGP-01	6/11/2002	9:00	TEMPERATURE, AIR deg C		Water	22	deg C	
DGO-01	6/11/2002	10:45	TEMPERATURE, AIR deg C		Water	22	deg C	
RLE-1	08/07/2003	10:41	Temperature, sample		Water	15	deg C	7 ft
RLE-1	10/15/2003	11:10	Temperature, sample		Water	14	deg C	7 ft
RLE-1	06/04/2003	10:48	Temperature, sample		Water	10	deg C	11 ft
RLE-1	08/07/2003	10:41	Temperature, sample		Water	8	deg C	1 ft
RLE-1	07/23/2003	10:36	Temperature, sample		Water	8	deg C	1 ft
RLE-1	08/07/2003	10:41	Temperature, sample		Water	8	deg C	11 ft
RLE-1	07/23/2003	10:36	Temperature, sample		Water	8	deg C	17 ft
RLE-1	08/07/2003	10:41	Temperature, sample		Water	8	deg C	7 ft
RLE-1	07/23/2003	10:36	Temperature, sample		Water	8	deg C	9 ft
RLE-1	07/23/2003	10:36	Temperature, sample		Water	8	deg C	9 ft
RLE-2	08/07/2003	11:21	Temperature, sample		Water	8	deg C	1 ft
RLE-2	07/23/2003	11:28	Temperature, sample		Water	8	deg C	1 ft
RLE-3	08/07/2003	11:38	Temperature, sample		Water	8	deg C	1 ft
RLE-3	07/23/2003	11:48	Temperature, sample		Water	8	deg C	1 ft
RLE-1	04/15/2003	10:30	Temperature, sample		Water	7	deg C	427 ft
RLE-1	8/11/2009	11:00	Temperature, sample		Water	6	deg C	1 ft
RLE-1	8/11/2009	11:10	Temperature, sample		Water	6	deg C	9 ft
RLE-1	8/11/2009	11:25	Temperature, sample		Water	6	deg C	16 ft
DGLC-01	5/14/2012	9:30	Temperature, sample		Water	6	deg C	
DGLC-01	7/10/2012	8:29	Temperature, sample		Water	6	deg C	
DGP-01	7/16/2007	11:00	Temperature, sample		Water	6	deg C	
DGP-01	7/16/2007	11:00	Temperature, sample		Water	6	deg C	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	7/18/2007	10:45	Temperature, sample		Water	6	deg C	
DGLC-01	7/16/2007	9:45	Temperature, sample		Water	6	deg C	
RLE-1	6/3/2009	11:30	Temperature, sample		Water	5	deg C	1 ft
RLE-1	6/3/2009	12:05	Temperature, sample		Water	5	deg C	9 ft
RLE-1	6/3/2009	11:40	Temperature, sample		Water	5	deg C	17 ft
DGPC-01	6/12/2007	9:00	Temperature, sample		Water	5	deg C	
DGPC-01	6/12/2007	9:00	Temperature, sample		Water	5	deg C	
DGO-01	7/3/2007	12:00	Temperature, sample		Water	5	deg C	
DGO-01	7/3/2007	12:00	Temperature, sample		Water	5	deg C	
DGPC-01	8/20/2007	11:00	Temperature, sample		Water	5	deg C	
DGPC-01	8/20/2007	11:00	Temperature, sample		Water	5	deg C	
DGLC-01	8/22/2007	9:45	Temperature, sample		Water	4.7	deg C	
RLE-1	10/15/2003	11:10	Temperature, sample		Water	4	deg C	1 ft
RLE-1	04/15/2003	10:30	Temperature, sample		Water	4	deg C	1 ft
RLE-1	04/15/2003	10:30	Temperature, sample		Water	4	deg C	11 ft
RLE-1	10/15/2003	11:10	Temperature, sample		Water	4	deg C	14 ft
RLE-1	10/15/2003	11:10	Temperature, sample		Water	4	deg C	7 ft
RLE-1	04/15/2003	10:30	Temperature, sample		Water	4	deg C	7 ft
RLE-1	7/22/2009	10:51	Temperature, sample		Water	4	deg C	1 ft
RLE-1	7/22/2009	11:10	Temperature, sample		Water	4	deg C	9 ft
RLE-1	7/22/2009	10:59	Temperature, sample		Water	4	deg C	18 ft
RLE-2	10/15/2003	11:45	Temperature, sample		Water	4	deg C	1 ft
RLE-2	04/15/2003	11:06	Temperature, sample		Water	4	deg C	1 ft
RLE-3	10/15/2003	12:00	Temperature, sample		Water	4	deg C	1 ft
RLE-3	04/15/2003	11:20	Temperature, sample		Water	4	deg C	1 ft
DGP-01	5/15/2012	11:29	Temperature, sample		Water	4	deg C	
DGO-01	5/15/2012	10:45	Temperature, sample		Water	4	deg C	
DGP-01	9/17/2012	10:59	Temperature, sample		Water	4	deg C	
DGLC-01	6/18/2007	14:15	Temperature, sample		Water	4	deg C	
DGLC-01	6/18/2007	14:15	Temperature, sample		Water	4	deg C	
DGO-01	8/20/2007	12:20	Temperature, sample		Water	4	deg C	
DGO-01	8/20/2007	12:20	Temperature, sample		Water	4	deg C	
DGP-01	8/20/2007	11:40	Temperature, sample		Water	4	deg C	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGP-01	8/20/2007	11:40	Temperature, sample		Water	4	deg C	
DGLC-BU-E1	9/5/2007	11:10	Temperature, sample		Water	4	deg C	
DGLC-BU-C1	9/5/2007	10:00	Temperature, sample		Water	4	deg C	
DGLC-BU-C2	9/5/2007	11:45	Temperature, sample		Water	4	deg C	
DGP-01	9/17/2007	10:45	Temperature, sample		Water	4	deg C	
DGLC-01	9/26/2007	12:10	Temperature, sample		Water	3.6	deg C	
DGPC-01	6/12/2007	9:00	Temperature, sample		Water	3.4	deg C	
RLE-1	4/14/2009	11:08	Temperature, sample		Water	3	deg C	1 ft
RLE-1	10/14/2009	11:00	Temperature, sample		Water	3	deg C	1 ft
RLE-1	4/14/2009	11:18	Temperature, sample		Water	3	deg C	9 ft
RLE-1	10/14/2009	11:10	Temperature, sample		Water	3	deg C	9 ft
RLE-1	10/14/2009	11:20	Temperature, sample		Water	3	deg C	17 ft
RLE-1	4/14/2009	11:28	Temperature, sample		Water	3	deg C	18 ft
DGP-01	7/17/2012	8:06	Temperature, sample		Water	3	deg C	
DGO-01	7/17/2012	7:00	Temperature, sample		Water	3	deg C	
DGLC-01	7/16/2012	11:35	Temperature, sample		Water	3	deg C	
DGP-01	7/9/2007	11:20	Temperature, sample		Water	3	deg C	
DGP-01	9/17/2007	10:45	Temperature, sample		Water	3	deg C	
DGP-01	9/25/2007	10:45	Temperature, sample		Water	3	deg C	
DGP-01	7/18/2007	10:45	Temperature, sample		Water	2.8	deg C	
DGLC-01	7/16/2007	9:45	Temperature, sample		Water	2.8	deg C	
DGLC-BU-C1	9/5/2007	10:00	Temperature, sample		Water	2.5	deg C	
DGLC-BU-E1	9/5/2007	11:10	Temperature, sample		Water	2.5	deg C	
DGLC-BU-C2	9/5/2007	11:45	Temperature, sample		Water	2.5	deg C	
DGP-01	9/25/2007	10:45	Temperature, sample		Water	2.5	deg C	
DGPC-01	8/20/2007	11:00	Temperature, sample		Water	2.1	deg C	
DGO-01	8/20/2007	12:20	Temperature, sample		Water	2.1	deg C	
DGP-01	8/20/2007	11:40	Temperature, sample		Water	2.1	deg C	
RLE-1	06/04/2003	10:48	Temperature, sample		Water	2	deg C	1 ft
RLE-1	06/04/2003	10:48	Temperature, sample		Water	2	deg C	11 ft
RLE-1	06/04/2003	10:48	Temperature, sample		Water	2	deg C	18 ft
RLE-1	4/17/2012	10:32	Temperature, sample		Water	2	deg C	
RLE-1	4/17/2012	10:33	Temperature, sample		Water	2	deg C	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	4/17/2012	10:35	Temperature, sample		Water	2	deg C	
RLE-1	6/11/2012	10:49	Temperature, sample		Water	2	deg C	
RLE-1	6/11/2012	10:53	Temperature, sample		Water	2	deg C	
RLE-1	6/11/2012	11:00	Temperature, sample		Water	2	deg C	
RLE-1	7/18/2012	10:06	Temperature, sample		Water	2	deg C	
RLE-1	7/18/2012	10:07	Temperature, sample		Water	2	deg C	
RLE-1	7/18/2012	10:06	Temperature, sample		Water	2	deg C	
RLE-1	8/22/2012	10:24	Temperature, sample		Water	2	deg C	
RLE-1	8/22/2012	10:26	Temperature, sample		Water	2	deg C	
RLE-1	8/22/2012	10:27	Temperature, sample		Water	2	deg C	
RLE-2	06/04/2003	11:37	Temperature, sample		Water	2	deg C	1 ft
RLE-3	06/04/2003	12:03	Temperature, sample		Water	2	deg C	1 ft
DGP-01	7/16/2007	11:00	Temperature, sample		Water	2	deg C	
DGLC-01	6/18/2007	14:15	Temperature, sample		Water	1.8	deg C	
DGP-01	9/25/2007	12:20	Temperature, sample		Water	1.8	deg C	
DGPC-01	9/25/2007	13:40	Temperature, sample		Water	1.8	deg C	
DGLC-01	9/18/2012	10:14	Temperature, sample		Water	1	deg C	
DGO-01	7/3/2007	12:00	Temperature, sample		Water	0.5	deg C	
RLE-1	4/14/2009	11:08	Temperature, sample		Water	0	deg C	2 ft
RLE-1	6/3/2009	11:30	Temperature, sample		Water	0	deg C	4 ft
RLE-1	7/22/2009	10:51	Temperature, sample		Sediment	0	deg C	20 ft
DGLC-01	9/18/2012	8:39	Temperature, sample		Water	0	deg C	
DGP-01	9/18/2012	12:44	Temperature, sample		Water	0	deg C	
DGP-01	9/11/2002	13:00	TEMPERATURE, SAMPLE deg C		Water	6	deg C	
DGLC-01	6/10/2002	9:00	TEMPERATURE, SAMPLE deg C		Water	5	deg C	
DGP-01	6/11/2002	9:00	TEMPERATURE, SAMPLE deg C		Water	5	deg C	
DGO-01	6/11/2002	10:45	TEMPERATURE, SAMPLE deg C		Water	5	deg C	
DGP-01	8/8/2002	12:45	TEMPERATURE, SAMPLE deg C		Water	4	deg C	
DGLC-01	9/11/2002	14:30	TEMPERATURE, SAMPLE deg C		Water	4	deg C	
DGLC-01	8/12/2002	15:30	TEMPERATURE, SAMPLE deg C		Water	2	deg C	
DGLC-01	8/22/2007	9:45	Temperature, water		Water	27.68	deg C	
DGLC-01	6/18/2007	14:15	Temperature, water		Water	26	deg C	
DGLC-BU-C2	9/5/2007	11:45	Temperature, water		Water	25.85	deg C	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-BU-E1	9/5/2007	11:10	Temperature, water		Water	25.74	deg C	
DGLC-01	7/10/2012	8:30	Temperature, water		Water	24.87	deg C	
DGP-01	8/20/2007	11:40	Temperature, water		Water	23.96	deg C	
DGPC-01	8/20/2007	11:00	Temperature, water		Water	23.8	deg C	
DGO-01	8/20/2007	12:20	Temperature, water		Water	23.73	deg C	
DGP-01	7/18/2007	10:45	Temperature, water		Water	23.25	deg C	
DGLC-01	7/16/2007	9:45	Temperature, water		Water	22.79	deg C	
DGLC-BU-C1	9/5/2007	10:00	Temperature, water		Water	22.68	deg C	
DGP-01	9/25/2007	12:20	Temperature, water		Water	22.39	deg C	
DGLC-01	9/26/2007	12:10	Temperature, water		Water	22.36	deg C	
DGPC-01	9/25/2007	13:40	Temperature, water		Water	20.71	deg C	
DGO-01	7/3/2007	12:00	Temperature, water		Water	20.39	deg C	
DGPC-01	6/12/2007	9:00	Temperature, water		Water	20.32	deg C	
DGP-01	9/17/2012	11:00	Temperature, water		Water	17.3	deg C	
DGP-01	5/15/2012	11:30	Temperature, water		Water	16.9	deg C	
DGLC-01	9/18/2012	10:15	Temperature, water		Water	15.9	deg C	
DGO-01	5/15/2012	10:45	Temperature, water		Water	15.9	deg C	
DGLC-01	5/14/2012	9:30	Temperature, water		Water	14	deg C	
DGLC-01	8/12/2002	15:30	TEMPERATURE, WATER deg C		Water	30.5	deg C	
DGLC-01	9/11/2002	14:30	TEMPERATURE, WATER deg C		Water	26.1	deg C	
DGP-01	8/8/2002	12:45	TEMPERATURE, WATER deg C		Water	22.4	deg C	
DGP-01	6/11/2002	9:00	TEMPERATURE, WATER deg C		Water	21.4	deg C	
DGP-01	9/11/2002	13:00	TEMPERATURE, WATER deg C		Water	21.1	deg C	
DGO-01	6/11/2002	10:45	TEMPERATURE, WATER deg C		Water	19.8	deg C	
DGLC-01	6/10/2002	9:00	TEMPERATURE, WATER deg C		Water	18.7	deg C	
RLE-1	6/11/2012	10:53	Total dissolved solids		Water	202	mg/l	9 ft
RLE-1	7/18/2012	10:06	Total dissolved solids		Water	188	mg/l	9 ft
RLE-1	4/17/2012	10:33	Total dissolved solids		Water	116	mg/l	9 ft
RLE-1	8/22/2012	10:26	Total dissolved solids		Water	80	mg/l	9 ft
RLE-1	7/22/2009	10:51	Total fixed solids		Sediment	89.2	%	20 ft
RLE-1	7/22/2009	10:51	Total solids		Sediment	33.3	%	20 ft
RLE-1	6/11/2012	10:53	Total suspended solids		Water	161	mg/l	9 ft
DGLC-01	7/16/2012	11:35	Total suspended solids		Water	86	mg/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	4/17/2012	10:35	Total suspended solids		Water	45	mg/l	15 ft
DGLC-01	7/10/2012	8:29	Total suspended solids		Water	45	mg/l	
DGLC-01	9/18/2012	10:14	Total suspended solids		Water	44	mg/l	
RLE-1	8/22/2012	10:27	Total suspended solids		Water	36	mg/l	14 ft
RLE-1	6/11/2012	11:00	Total suspended solids		Water	33	mg/l	16 ft
DGLC-01	5/14/2012	9:30	Total suspended solids		Water	32	mg/l	
DGP-01	5/15/2012	11:29	Total suspended solids		Water	32	mg/l	
RLE-1	7/18/2012	10:07	Total suspended solids		Water	31	mg/l	15 ft
RLE-1	8/22/2012	10:24	Total suspended solids		Water	26	mg/l	1 ft
RLE-1	7/18/2012	10:06	Total suspended solids		Water	26	mg/l	9 ft
RLE-1	8/22/2012	10:26	Total suspended solids		Water	26	mg/l	9 ft
DGLC-01	9/18/2012	8:39	Total suspended solids		Water	26	mg/l	
RLE-1	7/18/2012	10:06	Total suspended solids		Water	23	mg/l	1 ft
RLE-1	4/17/2012	10:32	Total suspended solids		Water	19	mg/l	1 ft
RLE-1	6/11/2012	10:49	Total suspended solids		Water	18	mg/l	1 ft
RLE-1	4/17/2012	10:33	Total suspended solids		Water	16	mg/l	9 ft
DGP-01	9/17/2012	10:59	Total suspended solids		Water	15	mg/l	
DGO-01	7/17/2012	7:00	Total suspended solids		Water	11	mg/l	
DGP-01	9/18/2012	12:44	Total suspended solids		Water	11	mg/l	
DGP-01	7/17/2012	8:06	Total suspended solids		Water	8	mg/l	
RLE-1	7/22/2009	10:51	Total volatile solids		Sediment	10.8	%	20 ft
DGLC-01	8/22/2007	9:45	Turbidity		Water	74	NTU	
DGLC-01	9/18/2012	10:15	Turbidity		Water	45	NTU	
DGLC-01	7/10/2012	8:30	Turbidity		Water	33	NTU	
DGLC-01	5/14/2012	9:30	Turbidity		Water	28	NTU	
DGP-01	7/18/2007	10:45	Turbidity		Water	27	NTU	
DGP-01	5/15/2012	11:30	Turbidity		Water	26	NTU	
DGLC-01	9/26/2007	12:10	Turbidity		Water	23	NTU	
DGP-01	8/20/2007	11:40	Turbidity		Water	15.8	NTU	
DGPC-01	8/20/2007	11:00	Turbidity		Water	14.5	NTU	
DGO-01	8/20/2007	12:20	Turbidity		Water	12.7	NTU	
DGPC-01	9/25/2007	13:40	Turbidity		Water	11	NTU	
DGP-01	9/17/2012	11:00	Turbidity		Water	10.5	NTU	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGLC-01	6/18/2007	14:15	Turbidity		Water	9.9	NTU	
DGO-01	5/15/2012	10:45	Turbidity		Water	7.5	NTU	
DGP-01	9/25/2007	12:20	Turbidity		Water	7.2	NTU	
DGO-01	7/3/2007	12:00	Turbidity		Water	6.8	NTU	
DGPC-01	6/12/2007	9:00	Turbidity		Water	6.3	NTU	
DGLC-01	7/16/2007	9:45	Turbidity		Water	5	NTU	
DGO-01	6/11/2002	10:45	TURBIDITY NTU		Water	835	NTU	
DGP-01	6/11/2002	9:00	TURBIDITY NTU		Water	90	NTU	
DGLC-01	8/12/2002	15:30	TURBIDITY NTU		Water	51.1	NTU	
DGLC-01	9/11/2002	14:30	TURBIDITY NTU		Water	44	NTU	
DGLC-01	6/10/2002	9:00	TURBIDITY NTU		Water	34	NTU	
DGP-01	8/8/2002	12:45	TURBIDITY NTU		Water	15	NTU	
DGP-01	9/11/2002	13:00	TURBIDITY NTU		Water	8.2	NTU	
DGLC-01	8/22/2007	9:45	Vanadium	Total	Water	10	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Vanadium	Total	Water	8	ug/l	
DGLC-01	8/22/2007	9:45	Vanadium	Dissolved	Water	7.4	ug/l	
DGLC-01	9/18/2012	10:14	Vanadium	Total	Water	6.06	ug/l	
RLE-1	6/3/2009	12:05	Vanadium	Total	Water	4.79	ug/l	9 ft
DGLC-01	7/16/2007	9:45	Vanadium	Total	Water	4.5	ug/l	
DGPC-01	8/20/2007	11:00	Vanadium	Total	Water	3.8	ug/l	
DGO-01	7/3/2007	12:00	Vanadium	Total	Water	3.1	ug/l	
DGLC-01	9/18/2012	10:14	Vanadium	Dissolved	Water	2.93	ug/l	
RLE-1	7/22/2009	11:10	Vanadium	Total	Water	2.62	ug/l	9 ft
RLE-1	8/22/2012	10:26	Vanadium	Total	Water	1.96	ug/l	9 ft
RLE-1	6/11/2012	10:53	Vanadium	Total	Water	1.36	ug/l	9 ft
RLE-1	10/14/2009	11:10	Vanadium	Total	Water	1.15	ug/l	9 ft
DGP-01	9/17/2012	10:59	Vanadium	Total	Water	0.98	ug/l	
RLE-1	8/11/2009	11:10	Vanadium	Total	Water	0.77	ug/l	9 ft
DGP-01	9/17/2012	10:59	Vanadium	Dissolved	Water	0.31	ug/l	
DGLC-01	8/12/2002	15:30	VANADIUM,Dissolved ug/l	Dissolved	Water	7	ug/l	
DGP-01	8/8/2002	12:45	VANADIUM,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGLC-01	6/10/2002	9:00	VANADIUM,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGP-01	6/11/2002	9:00	VANADIUM,Dissolved ug/l	Dissolved	Water	5	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
DGO-01	6/11/2002	10:45	VANADIUM,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGP-01	9/11/2002	13:00	VANADIUM,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGLC-01	9/11/2002	14:30	VANADIUM,Dissolved ug/l	Dissolved	Water	5	ug/l	
DGO-01	6/11/2002	10:45	VANADIUM,Total ug/l	Total	Water	57	ug/l	
DGLC-01	8/12/2002	15:30	VANADIUM,Total ug/l	Total	Water	7	ug/l	
DGP-01	8/8/2002	12:45	VANADIUM,Total ug/l	Total	Water	5	ug/l	
DGLC-01	6/10/2002	9:00	VANADIUM,Total ug/l	Total	Water	5	ug/l	
DGP-01	6/11/2002	9:00	VANADIUM,Total ug/l	Total	Water	5	ug/l	
DGP-01	9/11/2002	13:00	VANADIUM,Total ug/l	Total	Water	5	ug/l	
DGLC-01	9/11/2002	14:30	VANADIUM,Total ug/l	Total	Water	5	ug/l	
DGLC-01	7/16/2012	11:35	Volatile suspended solids		Water	47	mg/l	
RLE-1	6/11/2012	10:53	Volatile suspended solids		Water	29	mg/l	9 ft
DGLC-01	7/10/2012	8:29	Volatile suspended solids		Water	28	mg/l	
RLE-1	6/11/2012	11:00	Volatile suspended solids		Water	16	mg/l	16 ft
DGLC-01	9/18/2012	10:14	Volatile suspended solids		Water	15	mg/l	
RLE-1	6/11/2012	10:49	Volatile suspended solids		Water	13	mg/l	1 ft
DGLC-01	9/18/2012	8:39	Volatile suspended solids		Water	12	mg/l	
RLE-1	7/18/2012	10:06	Volatile suspended solids		Water	11	mg/l	1 ft
RLE-1	4/17/2012	10:35	Volatile suspended solids		Water	10	mg/l	15 ft
RLE-1	7/18/2012	10:07	Volatile suspended solids		Water	9	mg/l	15 ft
RLE-1	7/18/2012	10:06	Volatile suspended solids		Water	8	mg/l	9 ft
RLE-1	8/22/2012	10:27	Volatile suspended solids		Water	8	mg/l	14 ft
DGLC-01	5/14/2012	9:30	Volatile suspended solids		Water	8	mg/l	
RLE-1	8/22/2012	10:24	Volatile suspended solids		Water	7	mg/l	1 ft
RLE-1	4/17/2012	10:33	Volatile suspended solids		Water	7	mg/l	9 ft
DGP-01	9/17/2012	10:59	Volatile suspended solids		Water	7	mg/l	
DGP-01	9/18/2012	12:44	Volatile suspended solids		Water	7	mg/l	
RLE-1	4/17/2012	10:32	Volatile suspended solids		Water	6	mg/l	1 ft
RLE-1	8/22/2012	10:26	Volatile suspended solids		Water	6	mg/l	9 ft
DGP-01	5/15/2012	11:29	Volatile suspended solids		Water	6	mg/l	
DGO-01	7/17/2012	7:00	Volatile suspended solids		Water	6	mg/l	
DGP-01	7/17/2012	8:06	Volatile suspended solids		Water	5	mg/l	
RLE-1	7/22/2009	11:10	Zinc	Total	Water	285	ug/l	9 ft

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	7/22/2009	10:51	Zinc	Total	Sediment	104	mg/kg	20 ft
RLE-1	07/23/2003	10:36	Zinc	Total	Sediment	89	mg/kg	19 ft
RLE-3	07/23/2003	11:48	Zinc	Total	Sediment	79	mg/kg	15 ft
RLE-1	10/14/2009	11:10	Zinc	Total	Water	36.8	ug/l	9 ft
DGLC-01	8/22/2007	9:45	Zinc	Total	Water	12	ug/l	
DGLC-BU-E1	9/5/2007	11:10	Zinc	Total	Water	12	ug/l	
RLE-1	6/11/2012	10:53	Zinc	Total	Water	10.7	ug/l	9 ft
DGLC-BU-C1	9/5/2007	10:00	Zinc	Total	Water	9.3	ug/l	
DGLC-BU-C2	9/5/2007	11:45	Zinc	Total	Water	7.9	ug/l	
DGLC-01	9/18/2012	10:14	Zinc	Total	Water	6.22	ug/l	
DGP-01	9/25/2007	12:20	Zinc	Total	Water	6.2	ug/l	
DGPC-01	9/25/2007	13:40	Zinc	Total	Water	6.2	ug/l	
RLE-1	4/17/2012	10:33	Zinc	Total	Water	6.01	ug/l	9 ft
DGLC-01	7/16/2007	9:45	Zinc	Total	Water	5.7	ug/l	
DGP-01	7/18/2007	10:45	Zinc	Total	Water	5.4	ug/l	
DGP-01	8/20/2007	11:40	Zinc	Dissolved	Water	5.2	ug/l	
DGO-01	7/3/2007	12:00	Zinc	Total	Water	5.2	ug/l	
DGO-01	7/3/2007	12:00	Zinc	Dissolved	Water	5.1	ug/l	
RLE-1	6/3/2009	12:05	Zinc	Total	Water	5.06	ug/l	9 ft
DGP-01	8/20/2007	11:40	Zinc	Total	Water	4.8	ug/l	
RLE-1	8/11/2009	11:10	Zinc	Total	Water	4.63	ug/l	9 ft
DGPC-01	9/25/2007	13:40	Zinc	Dissolved	Water	4.4	ug/l	
DGLC-01	9/26/2007	12:10	Zinc	Dissolved	Water	3.96	ug/l	
DGPC-01	6/12/2007	9:00	Zinc	Total	Water	3.9	ug/l	
DGO-01	8/20/2007	12:20	Zinc	Total	Water	3.9	ug/l	
DGPC-01	6/12/2007	9:00	Zinc	Dissolved	Water	3.8	ug/l	
DGPC-01	8/20/2007	11:00	Zinc	Total	Water	3.8	ug/l	
DGLC-01	6/18/2007	14:15	Zinc	Dissolved	Water	3.7	ug/l	
RLE-1	4/14/2009	11:18	Zinc	Total	Water	3.57	ug/l	9 ft
DGLC-01	6/18/2007	14:15	Zinc	Total	Water	3.5	ug/l	
DGLC-01	5/14/2012	9:30	Zinc	Total	Water	3.33	ug/l	
DGLC-01	7/10/2012	8:29	Zinc	Total	Water	3.07	ug/l	
DGP-01	9/25/2007	12:20	Zinc	Dissolved	Water	3	ug/l	

Segment	Date	Time	Analyte	Fraction	Medium	Result	Units	Depth
RLE-1	8/22/2012	10:26	Zinc	Total	Water	2.98	ug/l	9 ft
DGLC-01	8/22/2007	9:45	Zinc	Dissolved	Water	2.8	ug/l	
DGPC-01	8/20/2007	11:00	Zinc	Dissolved	Water	2.7	ug/l	
DGP-01	9/17/2012	10:59	Zinc	Total	Water	2.69	ug/l	
DGO-01	8/20/2007	12:20	Zinc	Dissolved	Water	2.6	ug/l	
RLE-1	7/18/2012	10:06	Zinc	Total	Water	2.25	ug/l	9 ft
DGP-01	5/15/2012	11:29	Zinc	Total	Water	2.02	ug/l	
DGP-01	9/17/2012	10:59	Zinc	Dissolved	Water	1.26	ug/l	
DGLC-01	9/18/2012	10:14	Zinc	Dissolved	Water	1.25	ug/l	
DGLC-01	9/26/2007	12:10	Zinc	Total	Water	0.96	ug/l	
DGLC-01	8/12/2002	15:30	ZINC,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGP-01	8/8/2002	12:45	ZINC,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGLC-01	6/10/2002	9:00	ZINC,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGP-01	6/11/2002	9:00	ZINC,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGO-01	6/11/2002	10:45	ZINC,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGP-01	9/11/2002	13:00	ZINC,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGLC-01	9/11/2002	14:30	ZINC,Dissolved ug/l	Dissolved	Water	100	ug/l	
DGO-01	6/11/2002	10:45	ZINC,Total ug/l	Total	Water	140	ug/l	
DGLC-01	8/12/2002	15:30	ZINC,Total ug/l	Total	Water	100	ug/l	
DGP-01	8/8/2002	12:45	ZINC,Total ug/l	Total	Water	100	ug/l	
DGLC-01	6/10/2002	9:00	ZINC,Total ug/l	Total	Water	100	ug/l	
DGP-01	6/11/2002	9:00	ZINC,Total ug/l	Total	Water	100	ug/l	
DGP-01	9/11/2002	13:00	ZINC,Total ug/l	Total	Water	100	ug/l	
DGLC-01	9/11/2002	14:30	ZINC,Total ug/l	Total	Water	100	ug/l	

This page intentionally left blank.

Appendix D

Public Comments

This page intentionally left blank.

Handwritten comments on Stage 1 Draft Report from Dana Walker, LMREP 4/2/2017

Table 1-1: Was there a major run-off event and discharge from the Bushnell sewage treatment plant (involving a shot of chlorine) in August 2007? This information is currently unknown but further investigation may take place prior to modeling if needed. I speculate that the low dissolved oxygen may be due to enhanced nitrogen and phosphorus (algal growth) from manure application and/or erosion in the watersheds above. Thank you for the information.

Page 2-1: include Henderson County. Text updated

Table 2-1: What about wheat/oats? Appendix A contains more detailed information on landuses throughout the watershed. Agriculture other than corn and soybeans accounts for less than 1% of the watershed area.

Page 2-3: k-factor – what about clay%? This information is unknown. Soil types were searched and it was found that soils containing "clay" in some part of the classification name cover roughly 10% of the watershed area.

Figure 2-3 and 2-4: I wonder about the large amount of "NA" soils The database was rechecked and these data are not available in the soils database.

Table 4-4: Same comment as for Table 1-1.

Page 5-2: Agreed that data is extremely limited and additional data collection is needed. I think you will find that a large % of Hancock Co. cropland is saturated with phosphorus due to excessive manure application. Thank you for the information

Page 5-3: I agree that manganese is probably not a problem.

Page 5-4: I would say that suspended solids and phosphorus tend to go together and wonder if the data collected were during (or after) major run-off (and erosion) events. This information is unknown at this time, however, a load duration curve will be used to calculate reductions needed in stream TP and TSS. This exercise pairs samples with flow data to show if the concentrations occurred under high or low flow conditions.

Page 5-6: Carthage Lake is a ½ mile northwest of Carthage and is fed by a tributary of Long Creek. Text has been updated.

Page 5-7: many of the facilities named do NOT discharge upstream of impaired segments. Table name has been updated.

Page 5-8: table numbers in text are off; also on page 5-9. Numbering updated.

Figure 5-5: should it be micrograms instead of mg? Also figure 5-6. Figures have been corrected

Figure 5-9: puzzling Multiple stations were sampled within the impaired segment during a facility related stream survey in 1988. Text has been added to the report for clarification: *Note that there are multiple water quality stations located in the Drowning Fork segment DGLC-01 and Prairie Creek*

segment DGZN-01; as shown in **Figure 5-1**. The watershed-specific water quality target for TSS in streams is a maximum value of 50.9 mg/L. **Figure 5-8** shows the TSS data collected over time on Drowning Fork Segment DLGC-01 and **Figure 5-9** shows TSS data over time for Prairie Creek segment DGZN-01. Note that when multiple results are shown for a single date, the results are shown from upstream to downstream sites within the segment.

Figure 5-13: I question the 4/17/12 figure Data were double checked and confirmed.

Figure 5-14: 6/11/12 figure looks funny Data were reviewed and confirmed. However – the high sample was collected at a mid-range depth and text has been added to clarify: *It should be noted that the samples collected above the 50.9 mg/L threshold were collected near the lake bottom in 2003 and 2009 and at a depth of 9 feet in 2009.*

Section 6.4.2: should solids replace sediment? Text updated.

Upper La Moine River Watershed TMDL Stage 1 Draft Report

Review by Eric Moe, President of LaMoine Ecosystem

4/3/2017

1. Page 2-1: Henderson County has some watershed contributing to the overall La Moine watershed. Sentence has been fixed.

2. Drowning Fork impairment – during some of the sample data in 2007, it is possible the only flow contributing to the Drowning Fork would be the City of Bushnell's west WWTP. It is an aerated lagoon with a chlorine exemption. However, the potable water supply is a deep well and R/O system and this is chlorinated. Thank you for this info. We will be using a load duration curve to develop the Stage 3 TMDL which will show if the 2007 samples were collected under extremely low flow. This information will help in the source discussion and implementation plan.

3. FYI. Carthage is currently constructing a deep well and a R/O WTP to replace its source from the Lake. The lake has been unreliable during periods of drought. This information has been added to Section 5.2

4. In table 5-11, the flow for Carthage and for Macomb must be the maximum. Average for Carthage is probably less than 0.5 mgd and Macomb is very low. The Macomb facility is a permitted treated contained overflow facility for periods of wet weather and it has not discharged in years. The table has been updated to include the average and max flows where information was available.

5. Table 5-11. The Macomb IL0029688 facility discharges about 1000 feet upstream from the East fork of the La Moine River in an unnamed tributary. It does not flow into the Kiljordan Creek. According to the permit: The main discharge number is B01. The seven day once in ten year low flow (7Q10) of the receiving stream, Kiljordan Creek is 0 cfs.

http://external.epa.illinois.gov/PublicNoticeService/api/Notices/GetDocument/774

6. Both the City of LaHarpe and the Village of Blandinsville use the LaHarpe Creek as potable water sources. Both have pumping facilities within the stream. Both of the reservoirs to which the water is pumped are also used for recreational purposes – mostly fishing for the Blandinsville reservoir and boating, camping and fishing at LaHarpe. Thank you for the information. LaHarpe Creek, Bladinsville Res and LaHarpe Res are not currently listed for impairment of the public water supply use.

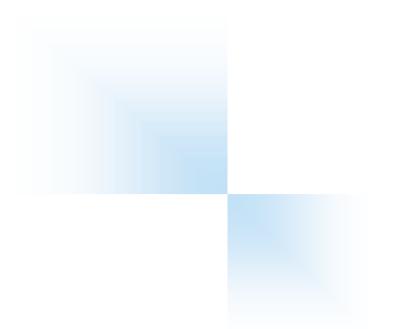
7. Can we recommend additional testing be conducted or is the amount of testing deemed to be adequate? Since Carthage Lake is part of the Ambient Lakes Program, is there a possibility that Spring Lake, Lake Argyle, LaHarpe and Blandinsville reservoirs would have similar characteristics and water quality? Can we have a discussion on this? Additional monitoring is recommended for some of the impaired waterbodies (refer to Section 6). Illinois EPA has also reviewed data availability for the additional lakes mentioned in this comment. Spring Lake has been sampled in the following years: 1999,

2003, 2006, 2009, 2012. Lake Argyle has been sampled in the following years: 1999, 2002, 2005, 2010, 2012. LaHarpe was sampled in 1999. No data were available for Blandinsville. Data are available for review online (EPA STORET: https://www.epa.gov/waterdata/water-quality-data-wqx) or through request from Illinois EPA.

8. Removing LaHarpe Creek from the 303(d) list for manganese is concerning because of the potable water source issues. The recommendation is to delist LaHarpe Creek for impairment of the aquatic life use due to manganese as the standard is not exceeded. According to the 2016 303(d) list – segment DGP was assessed to be fully supporting the public water supply use.

9. Can we show Lake Argyle on the Watershed maps? This is a fair sized impoundment, is a Stateowned facility and gets heavy recreational use. Argyle Lake has been added to the figures.

10. On page 5-8 the Crop tillage practices are summarized. Is there a way to include information regarding the percentage of land which utilizes cover crops also? Between 2004 and 2015??? This information would be important to show any progress (or lack thereof) of the implementation of cover crops. This information is currently unknown. We will continue to work with county SWCDs to include as much cropping practice/BMP information as possible in the Stage 3 report.


11. Sampling at typical random field tile outlet locations could be a recommendation to further improve the sampling data. Also, further data in LaHarpe Lake, Lake Argyle and the Blandinsville reservoir would be a valuable enhancement to bolster up the report in order to justify implementation of further water quality policy changes. Thank you for the comment. Future sampling recommendations will be included in the implementation plan. This TMDL does not focus on the reservoirs listed in this comment.

12. The lower basin report mentioned that agricultural practices water quality standards being met are "voluntary". This is significant given the land use is at least 65% corn and soybeans. Can this be mentioned also in this report? Yes, this information will be included in the Stage 3 report/implementation plan.

Thank you!

Eric C Moe

e.moe@mcclureengineering.com

