Appendix A.

Guidelines for Conducting Proper and Successful Decompaction

1. Decompaction is required when all three conditions apply.
 A. the area has been trafficked or traversed by vehicles or construction equipment, and
 B. the soil penetrometer readings are 300 psi or greater, and
 C. The soil strength (psi) in the right-of-way area is greater than that of the non-trafficked area.

2. An Environmental and/or Agricultural Inspector (AI), with experience and training in the proper identification of compacted soil and operation methods of deep decompaction tools is required to observe the daily operation of the ripper/subsoiler to ensure the conditions are appropriate for decompaction efforts and that the proper equipment is utilized and that equipment is set-up and operated correctly.

3. To achieve the most effective shatter of the compacted soil the following guidelines have been established:
 A. Conduct ripping when the soil is dry. Follow the “Soil Plasticity Test Procedures” detailed in Appendix B to determine if soil conditions are adequately dry to conduct decompaction efforts.
 B. Deep ripping shall be conducted using a ripper or subsoiling tool with a shank length of no less than 18 inches and a shank spacing of approximately the same measurement as the shank length.
 C. Use a ripper with a knife length of no less than 2 inches more than the desired depth of decompaction.
 D. To best promote revegetation and restore crop production, a total depth of 30 or more inches of soil (topsoil plus subsoil) is required.
 E. The minimum depths of decompaction stated above in 3.D. are required where possible. A safe distance from sub-surface structures (tile drains, pipelines, buried utilities, bedrock, etc.) must be maintained at all times. Where such structures exist, a lesser depth of decompaction will be required to prevent damage to equipment and the structures as well as to maintain a safe work environment. The allowable decompaction depth in these instances will be determined on a site by site basis.
 F. When the knives are in the soil to the desired depth, the tongue of the ripper should be parallel to the surface of the ground.
 G. Select a tractor that has enough horsepower to pull the ripper at a speed of 1.5 to 2 mph and whose footprint is of equal or lesser width than the ripper. Tracked equipment is preferred and typically required to achieve this criteria.
 H. The ripper shanks should not create ruts, channels, or mixing of the sub-soil with topsoil. A speed of 1.5 to 2 mph is recommended to minimize the risk of rutting and soil mixing. The ideal operating speed can vary with soil characteristics, tractor and ripping tool used. An excessive travel speed will often increase mixing of soil horizons.
 I. When the equipment is set up and operated correctly, the ripper should create a wave across the surface of the ground as it lifts and drops the soil.
J. Make one ripping pass through the compacted area. Using a penetrometer, the AI will measure the PSI between the ripped knife tracks to determine if the single ripping pass was successful. Additional passes should only be used where needed as they may reduce the effectiveness of the ripping by recompacting the soil shattered in the previous pass.

K. If the first pass does not successfully decompact the soil, additional passes will be needed. Should multiple passes of the ripper be needed to achieve decompaction between the knives tracks of the ripping tool, the subsequent passes should be positioned so the knife tracks from the previous pass are split by the second pass. If three or more passes have been made and sufficient decompaction has not yet been achieved the AI may choose to halt further decompaction efforts in that area until conditions improve or better methods are determined.

L. Following ripping, all stone and rock three or more inches in size which has been lifted to the surface shall be collected and removed from agricultural areas.

M. After ripping has been conducted, do not allow unnecessary traffic on the ripped area.

N. In agricultural lands and croplands that will not be replanted to vegetation by the Company, recommend to landowners to plant a cover crop (cereal rye, clover, alfalfa, tillage radish, turnips, etc.) following decompaction. Reduced compaction created by the ripper pass will not remain over time without subsequent root penetration. Root penetration into the shattered soil is necessary to establish permanent stabilized channels to conduct air and water into the soil profile. Two good sources for landowner cover crop education are http://www.mccc.msu.edu/CCinfo/cropbycrop.html and http://mcccdev.anr.msu.edu/. For local expertise, consult with your county’s Soil and Water Conservation District /USDA Natural Resource Conservation Service (NRCS) office for cover crop selection and compliance with NRCS planting deadlines.
Appendix B.

Soil Plasticity Test Procedures

The Agricultural Inspector will test the consistency of the surface soil to a depth of approximately 4 to 8 inches using the Field Plasticity Test procedure developed from the Annual Book of ASTM Standards, Plastic Limit of Soils (ASTM D-4318).

1. Pull a soil plug from the area to be tilled, moved, or trafficked to a depth of 4-8 inches.

2. Roll a portion of the sample between the palms of the hands to form a wire with a diameter of one-eighth inch.

3. The soil consistency is:
 A. Tillable (able to be worked) if the soil wire breaks into segments not exceeding 3/8 of an inch in length.
 B. Plastic (not tillable) if the segments are longer than 3/8 of an inch before breaking.

4. This Procedure is to be used to aid in determining when soil conditions are dry enough for construction activities to proceed.

5. Once the soil consistency has been determined to be of adequate dryness, the plasticity test is not required again until the next precipitation event.